ElasticSearch之cat trained model API
1.ElasticSearch之安装2.ElasticSearch之查看集群的参数3.ElasticSearch之健康状态4.ElasticSearch的日志配置5.ElasticSearch之cat aliases API6.ElasticSearch之Health API7.ElasticSearch之Nodes info API8.ElasticSearch之系统关键配置9.ElasticSearch之cat allocation API10.ElasticSearch之cat anomaly detectors API11.ElasticSearch之cat component templates API12.ElasticSearch之配置13.ElasticSearch之cat count API14.ElasticSearch之cat data frame analytics API15.ElasticSearch之禁用交换分区16.ElasticSearch之虚拟内存17.ElasticSearch之文件描述符的数量18.ElasticSearch之线程的数量19.ElasticSearch之cat datafeeds API20.ElasticSearch之cat fielddata API21.ElasticSearch之cat health API22.ElasticSearch之cat indices API23.ElasticSearch之cat master API24.ElasticSearch之cat nodeattrs API25.ElasticSearch之线程池26.ElasticSearch之cat nodes API27.ElasticSearch之cat pending tasks API28.ElasticSearch之cat plugins API29.ElasticSearch之cat recovery API30.ElasticSearch之cat repositories API31.ElasticSearch之cat segments API32.ElasticSearch之cat shards API33.ElasticSearch之cat task management API34.ElasticSearch之cat templates API35.ElasticSearch之cat thread pool API36.ElasticSearch之Search settings
37.ElasticSearch之cat trained model API
38.ElasticSearch之cat transforms API39.ElasticSearch之Merge40.ElasticSearch之Force merge API41.ElasticSearch之Task management API42.ElasticSearch之Slow Log43.ElasticSearch之Analyze index disk usage API44.ElasticSearch之Clear cache API45.ElasticSearch之Create index API46.ElasticSearch之Clone index API47.ElasticSearch之Close index API48.ElasticSearch之Open index API49.ElasticSearch之Delete index API50.ElasticSearch之Exists API51.ElasticSearch之Get index API52.ElasticSearch之Get index settings API53.ElasticSearch之Index stats API54.ElasticSearch之Refresh API55.ElasticSearch之Shard request cache settings56.ElasticSearch之Node query cache settings57.ElasticSearch之Index modules58.ElasticSearch之集群中的节点59.ElasticSearch之网络配置命令样例如下:
curl -X GET "https://localhost:9200/_cat/ml/trained_models?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
id heap_size operations create_time type ingest.pipelines data_frame.id lang_ident_model_1 1mb 39629 2019-12-05T12:28:34.594Z lang_ident 0 __none__
查看帮助,命令如下:
curl -X GET "https://localhost:9200/_cat/ml/trained_models?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
id | | the trained model id created_by | c,createdBy | who created the model heap_size | hs,modelHeapSize | the estimated heap size to keep the model in memory operations | o,modelOperations | the estimated number of operations to use the model license | l | The license level of the model create_time | ct | The time the model was created version | v | The version of Elasticsearch when the model was created description | d | The model description type | t | The model type ingest.pipelines | ip,ingestPipelines | The number of pipelines referencing the model ingest.count | ic,ingestCount | The total number of docs processed by the model ingest.time | it,ingestTime | The total time spent processing docs with this model ingest.current | icurr,ingestCurrent | The total documents currently being handled by the model ingest.failed | if,ingestFailed | The total count of failed ingest attempts with this model data_frame.id | dfid,dataFrameAnalytics | The data frame analytics config id that created the model (if still available) data_frame.create_time | dft,dataFrameAnalyticsTime | The time the data frame analytics config was created data_frame.source_index | dfsi,dataFrameAnalyticsSrcIndex | The source index used to train in the data frame analysis data_frame.analysis | dfa,dataFrameAnalyticsAnalysis | The analysis used by the data frame to build the model
相关资料
本文来自博客园,作者:jackieathome,转载请注明原文链接:https://www.cnblogs.com/jackieathome/p/17863560.html
合集:
ElasticSearch
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南