ElasticSearch之cat anomaly detectors API
1.ElasticSearch之安装2.ElasticSearch之查看集群的参数3.ElasticSearch之健康状态4.ElasticSearch的日志配置5.ElasticSearch之cat aliases API6.ElasticSearch之Health API7.ElasticSearch之Nodes info API8.ElasticSearch之系统关键配置9.ElasticSearch之cat allocation API
10.ElasticSearch之cat anomaly detectors API
11.ElasticSearch之cat component templates API12.ElasticSearch之配置13.ElasticSearch之cat count API14.ElasticSearch之cat data frame analytics API15.ElasticSearch之禁用交换分区16.ElasticSearch之虚拟内存17.ElasticSearch之文件描述符的数量18.ElasticSearch之线程的数量19.ElasticSearch之cat datafeeds API20.ElasticSearch之cat fielddata API21.ElasticSearch之cat health API22.ElasticSearch之cat indices API23.ElasticSearch之cat master API24.ElasticSearch之cat nodeattrs API25.ElasticSearch之线程池26.ElasticSearch之cat nodes API27.ElasticSearch之cat pending tasks API28.ElasticSearch之cat plugins API29.ElasticSearch之cat recovery API30.ElasticSearch之cat repositories API31.ElasticSearch之cat segments API32.ElasticSearch之cat shards API33.ElasticSearch之cat task management API34.ElasticSearch之cat templates API35.ElasticSearch之cat thread pool API36.ElasticSearch之Search settings37.ElasticSearch之cat trained model API38.ElasticSearch之cat transforms API39.ElasticSearch之Merge40.ElasticSearch之Force merge API41.ElasticSearch之Task management API42.ElasticSearch之Slow Log43.ElasticSearch之Analyze index disk usage API44.ElasticSearch之Clear cache API45.ElasticSearch之Create index API46.ElasticSearch之Clone index API47.ElasticSearch之Close index API48.ElasticSearch之Open index API49.ElasticSearch之Delete index API50.ElasticSearch之Exists API51.ElasticSearch之Get index API52.ElasticSearch之Get index settings API53.ElasticSearch之Index stats API54.ElasticSearch之Refresh API55.ElasticSearch之Shard request cache settings56.ElasticSearch之Node query cache settings57.ElasticSearch之Index modules58.ElasticSearch之集群中的节点59.ElasticSearch之网络配置curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9" id state data.processed_records model.bytes model.memory_status forecasts.total buckets.count
查看帮助,命令如下:
curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
id | | the job_id state | s | the job state opened_time | ot | the amount of time the job has been opened assignment_explanation | ae | why the job is or is not assigned to a node data.processed_records | dpr,dataProcessedRecords | number of processed records data.processed_fields | dpf,dataProcessedFields | number of processed fields data.input_bytes | dib,dataInputBytes | total input bytes data.input_records | dir,dataInputRecords | total record count data.input_fields | dif,dataInputFields | total field count data.invalid_dates | did,dataInvalidDates | number of records with invalid dates data.missing_fields | dmf,dataMissingFields | number of records with missing fields data.out_of_order_timestamps | doot,dataOutOfOrderTimestamps | number of records handled out of order data.empty_buckets | deb,dataEmptyBuckets | number of empty buckets data.sparse_buckets | dsb,dataSparseBuckets | number of sparse buckets data.buckets | db,dataBuckets | total bucket count data.earliest_record | der,dataEarliestRecord | earliest record time data.latest_record | dlr,dataLatestRecord | latest record time data.last | dl,dataLast | last time data was seen data.last_empty_bucket | dleb,dataLastEmptyBucket | last time an empty bucket occurred data.last_sparse_bucket | dlsb,dataLastSparseBucket | last time a sparse bucket occurred model.bytes | mb,modelBytes | model size model.memory_status | mms,modelMemoryStatus | current memory status model.bytes_exceeded | mbe,modelBytesExceeded | how much the model has exceeded the limit model.memory_limit | mml,modelMemoryLimit | model memory limit model.by_fields | mbf,modelByFields | count of 'by' fields model.over_fields | mof,modelOverFields | count of 'over' fields model.partition_fields | mpf,modelPartitionFields | count of 'partition' fields model.bucket_allocation_failures | mbaf,modelBucketAllocationFailures | number of bucket allocation failures model.categorization_status | mcs,modelCategorizationStatus | current categorization status model.categorized_doc_count | mcdc,modelCategorizedDocCount | count of categorized documents model.total_category_count | mtcc,modelTotalCategoryCount | count of categories model.frequent_category_count | mfcc,modelFrequentCategoryCount | count of frequent categories model.rare_category_count | mrcc,modelRareCategoryCount | count of rare categories model.dead_category_count | mdcc,modelDeadCategoryCount | count of dead categories model.failed_category_count | mfcc,modelFailedCategoryCount | count of failed categories model.log_time | mlt,modelLogTime | when the model stats were gathered model.timestamp | mt,modelTimestamp | the time of the last record when the model stats were gathered forecasts.total | ft,forecastsTotal | total number of forecasts forecasts.memory.min | fmmin,forecastsMemoryMin | minimum memory used by forecasts forecasts.memory.max | fmmax,forecastsMemoryMax | maximum memory used by forecasts forecasts.memory.avg | fmavg,forecastsMemoryAvg | average memory used by forecasts forecasts.memory.total | fmt,forecastsMemoryTotal | total memory used by all forecasts forecasts.records.min | frmin,forecastsRecordsMin | minimum record count for forecasts forecasts.records.max | frmax,forecastsRecordsMax | maximum record count for forecasts forecasts.records.avg | fravg,forecastsRecordsAvg | average record count for forecasts forecasts.records.total | frt,forecastsRecordsTotal | total record count for all forecasts forecasts.time.min | ftmin,forecastsTimeMin | minimum runtime for forecasts forecasts.time.max | ftmax,forecastsTimeMax | maximum run time for forecasts forecasts.time.avg | ftavg,forecastsTimeAvg | average runtime for all forecasts (milliseconds) forecasts.time.total | ftt,forecastsTimeTotal | total runtime for all forecasts node.id | ni,nodeId | id of the assigned node node.name | nn,nodeName | name of the assigned node node.ephemeral_id | ne,nodeEphemeralId | ephemeral id of the assigned node node.address | na,nodeAddress | network address of the assigned node buckets.count | bc,bucketsCount | bucket count buckets.time.total | btt,bucketsTimeTotal | total bucket processing time buckets.time.min | btmin,bucketsTimeMin | minimum bucket processing time buckets.time.max | btmax,bucketsTimeMax | maximum bucket processing time buckets.time.exp_avg | btea,bucketsTimeExpAvg | exponential average bucket processing time (milliseconds) buckets.time.exp_avg_hour | bteah,bucketsTimeExpAvgHour | exponential average bucket processing time by hour (milliseconds)
相关资料
本文来自博客园,作者:jackieathome,转载请注明原文链接:https://www.cnblogs.com/jackieathome/p/17852530.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南