文件一:将图形文件存入XML文件中..
文件名: imagetoxml.asp

<%

 Option Explicit
 dim xml
 Dim objStream
 Dim objXMLDoc 
''定义变量完结
'创建对像
 Set objXMLDoc = Server.CreateObject("Msxml2.DOMDocument.4.0")

    
'设定生成XML文档的根为 Base64Data
    objXMLDoc.loadXML "<?xml version='1.0'?><Base64Data />"

 
'用 stream 来读取数据
 Set objStream = Server.CreateObject("ADODB.Stream")
 objStream.Type 
= 1
 objStream.Open
 objStream.LoadFromFile Server.MapPath(
"2.jpg")

'2.jpg要和这个文件放在同一目录下.

    objXMLDoc.documentElement.dataType 
= "bin.base64"
    objXMLDoc.documentElement.nodeTypedvalue 
= objStream.Read
'数据流读取结束.得到了值 objXMLDoc 


'创建XML文件   
  Set xml = Server.CreateObject("Msxml2.DOMDocument.4.0")
  xml.load objXMLDoc 
  xml.save (Server.MapPath(
"2.xml"))

'同样文件名也可以自定义
  response.Write("成功")
%>


================================

文件二:把XML文件以图像的方式来显示
文件名:xmltoimage.asp
<%
Option Explicit
Dim objXMLDoc 
'定义变量完结
Set objXMLDoc = Server.CreateObject("Msxml2.DOMDocument.4.0")
objXMLDoc.async 
= False
objXMLDoc.validateOnParse 
= True
'创建对象

If objXMLDoc.load (Server.MapPath(
"2.xml")) Then
'如果成功加载2.xml(这个名可以自己改保证在SERVER.MAPPATH的相对路径下)
 Dim SigNode
 Set SigNode 
= objXMLDoc.selectSingleNode("//Base64Data")
 
'读取图片对象 
 If SigNode Is Nothing Then
  
'如果图片没有找到
 Else
  Response.ContentType 
= "image/jpg"
 Response.BinaryWrite SigNode.nodeTypedvalue
'Response.BinaryWrite 以二进制方式写出
 End If
Else
 
'发生了错误.代码自己写.
End If

%>


末了.大家可以用ASP的随机数来读取不同的XML文档就OK了.

同时传上兔子的个人头像..感谢她上回给我的三个大学生XML论文

文件名:
2.xml

<?xml version="1.0"?>
<Base64Data xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="bin.base64">/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAZAAA/+4ADkFkb2JlAGTAAAAA
Af
/bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAgIC
AgICAgICAwMDAwMDAwMDAwEBAQEBAQECAQECAgIBAgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMD
AwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD
/8AAEQgAcgCVAwERAAIRAQMRAf/EAKQAAQAD
AQEAAgMAAAAAAAAAAAAHCAkGCgULAgMEAQEAAAYDAQAAAAAAAAAAAAAAAgMEBQYHAQgJChAA
AAYCAgAEBAMFBQkBAAAAAgMEBQYHAQgACRIUFRYRExcKeLg5ITh5ubqRNhk6ejEiMiM0GClJ
yYoRAAEEAQMDAgQFAwUAAAAAAAABAgMEBRESBiETBzEUQVEiCGGBIxUJcTJC8MFiMxb
/2gAM
AwEAAhEDEQA
/APfxwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwD8RCCAIhj
EEAAByIQhZwEIQhx8RCELPwwEIcY
+Oc5/wBnAIob7cbl6lmGKJTVBHZC7FtDLNF7ezlRleYt
MUEsa7AiX498StkmUFFFt556EoJ41afGfD80PAJZ4BxkosGHwxQiSyV5A2HL06pYX8UbirJT
IEIyC1bm6qUKRUmZWpOYpAESpYMhPgQvh4
/j8ccA6xKqTLUydYjUEK0asgpUkVpTSz0ypMeW
E0hQnPKEMo4g4oeBAGHOQiDnGcZ
+HAP38AcAcAcAcAcAcAcAcAcAcAcAcAcA/mWpS1yNWiNy
LBSxMelNyDOMCwWoKGSPIc5xnGBYCPPw4BnXZmJlAzGUa09cqZGeLs1ezmOebN8oqa0ABNjT
LWgnHwLTJJGkTBUo1ZXxObHYoRIx4NLx4prdFTRfQ7E
+K6nE+c8WtePstFFFyFrnz1pkaiSO
1ROqP9VWNyfWxeixrqifSqpc2ppyVN4sQccuKXPDVgpE5qiwFp
/VSxF+NskhKMGA+WSyJFjB
/wAsOMgTqcHpfEIacfJbkVq6KaHy+Kv4LJz4jJsWO9XkVj2r80+KfNFTqip0VFK27UvMghst
hz9H3RxbMv7ThM4GIjzicjMhEhRrmooQiPD4Exxc0W
/P+bkQDBAJCHAc4Fgccaojl1+RtrwZ
jcRl
+S28ZloIZ2y4+VGpI1HaL0RVai/5aO6KnVE16lhqLPEorJlMz8AgA7TNOmKBn/kpUSSb
yNKgQpg4
+ASkaBESWSQWHGAFklhCHGA4xjks05cibBcmgb/ayV7U/o1yp/sS5wU44A4A4A4A
4A4A4A4A4A4A4A4A4A4BwFjQ1hmEeVFvahM2Ybk6pUU
+Ki0o07amwXgxwA5BViLTqWFWQRjC
0gwZYRlgwMIyjiijiuUVWrqnqVmPyF7E3YsljZXw3oXI5j2ro5qp
/rRU9FToVepRldGxQ/uV
crSZGji6hc0GoDjlKRvcjBAQvR0da39ehSI5LFnMlxC4R59SfOTpVRqpMf8AARqzAY3ORzU
+
aGdc45dj
+dQQZy1Elbl0SJFOjEXtWY0RdkyL6skYqbXsd0VqtVq9NCQZ3CJZdKrKN3iK+At7
bDpEhbnJ7dYy7GqJC9PURWJAgRRt4eRYRJEkcN
+aMYyReI0Hg8f+98IWKjXaqWXg3Jv/AB/K
avIVjWWKBzkexF0VzHtVrkRfTXRdU16ap1JCplIBhjrzBxmiMWweXyZrUZMyH5xyR5dD5cxr
h4xn9uFzHIk485xjw4NwMGM5yDOeQr6mOXLC27k1tURqyyvfonw3uV2n5a6Eu8FMOAOAOAOA
OAOAOAOAOAOAOAOAOAOARbNgheZhXcPWYxllXmyKVOycz4iTPGYgnbC2pjVFeIADSBO0gJcv
DnIsCy14CIAgCFkIHYJHZ3G8OyFfHxtrO3FhNRyMbs2HoXUsZZA
/AUiLNC5ojkucmhUeYKLK
B4AZKGdgYslh1Pj005YnmLqJdDVBU8aiBqwF5iCxvdRrxNjia2uxTaYFWWlWqkByU
/HygmeI
0ZOQA8Q8hxkDjrJDlnYirYb0SlpkcSRoXZ1SjUFplTtEyTi1MkiT4FCesbXM8lsOUiQ
+MR5S
RywEwkwIRmCGBMfAPJWxbv8AYBYVBqNpBb6M9XlO9I3VsiRTieitHlkMhcdrmzbQqyGQBxdr
BvFj2dc0Vm2DA2yNNr2hgryly
+SdCiCqPVBUYK6pQc157kMCvJ/31lVH0rFxK6VsascbIZpo
I4ldLZbdck0sTIWSNrSN7kzGI5zkdp9AOV
+2H7SuIeWGeC08U2M5JX5PhuOuy7s5zVly5YyO
NxmUuX44qGEn41E
/G0L1nI2KU+bpy+yxlqy6CKB0SyTS+Wz2BMstlsRR9ppTwKC2pN6qnTmZ
rf1smDj44LSOzd3rZIQki
+zsjLgxq0vV1a0ZS2eOvQJAPAlKkZA21eWlvM+V59DblqM5Qj+x
akgld7TEfR2q1yyr0Rl1
/a19k6Pbd9qjUk3OVqxyI3WuL4B9pGS4/j+Q2fBLqyZTA0spRiTk
XkZEsJezXGsKyu59rjVdbyMXk0Nvu8ZTPuldUSGBsrbtV8
/Ah2U7DCGl8kkh7L48y1+haake
oLLWiousJS7ThHbMh2ViikmVSGY7Sw
/WppdohKNXHskhBE7Ala9a3LU56glMqTuiRtoP/R+Q
GxPs2OSRsoNZA6KRsGGV0iTvuMXe
+S7HTa6N9KREbBanc5jmucjXNlZHli+FvtBlv1cLh/Cd
yzy6Wxlob1SXLeS2xUn4qvxy01atenxi3yOWK3W5NSe
+fK4HFQQ2IZooZJoJqNi7CEw7GezG
v
/qVHZJttWCw2sJFa0StidR6laxX/TPYCm5Fb0JhWskXijgzsknsBFtS6x+LuLNIMseFRTcv
e1SQvysMluW
+yW/Ifkmh7mvYy1ZVrSTxzysrwr2bVd88cdNjFa18qXXMhfHL29yMdM5ibadv
t7P479nH2Tct
/ZcxhvH+cjjzlPF28VRsZnJR/uWBzFfE3bvJbVqOaatQfxeKxk69ygl3tOsQ
YyCw
/v8AJOPpc9YVDymZzmjqZm1jsPtaw5jVNdymeRjyx6L25M5BEGd2lDD5NUIapJ6Q+Kz0
/wAozOTC/l+EWc5xnnanBWrl7CU7uRj7WQmqxPlZoqbJHxtc9ui9U2uVU0Xqmh4FeVcFxvi3
lDknGeG2
/f8AEMdn8hVo2dzX+4p17c0VWfe3Rr+9Axkm5qI127VOikrcupgQ4A4A4A4A4A4B
FdjXZV1SDQl2JLUsZE4oVrml8whd1gRNzcsbG5atOG2N64CVMQvekhORm5BjJigAcfHOfhxo
qlzxOFy
+euJj8HVsXL7kVUjhjfLIqIiqqoxiOcuiIqr09EVSNw7la0DRnuBdptpiBKSQpVLS
2OVjSJk6k
/KZMepUBYclEFKFIclgEPOMDHjw4+Of2c52r8jIHeOfIDbDaj8Hl0tPcrWsWpOj
nOa3c5GtWPVytb9SoiLonVehCtr7va3CQsrhD5s7zqbxh4Lf49G4LC5U9uTt40LizPDSNWez
oWJqy6MDmrKKOWrUxZKjJRuciwDwiia1yrrp6GTYXwl5VylhEZgrsMLXJufaZ7SJE
/5SWe23
T
+mvyOqp6zq2nUeKnoXuaSOFy5I6pC0D5WE6UIlJZC9W0OyN6LKYXZkyJucUR6ZQD5xhWDCR
ftyX4RiKvTT4lLz2
/JSll4pfxzaWZpzLHMnRdr2atcjXImjmqvo5NWuaqKiqikyBlNNGMb42
wKb1pFlIkeFqw1lc42z
/AC0jQixjKtaWnMSi8k3tiTw5OFjICCC/h8QhD+yFqoi9TA8Ncq0M
jHauxJNWavVq
/H8fyOThZjhY7USyIJGhl8Ly+x9/cZq2KRuUeXIWN0SviZijL0XjLfJjHhe3
lFqzkhpyRIlwaAZnmBAKxy5U0
/EvXK8jgslYjnw0Kw6N0cmiJqvTRdE+Xp81/LraTkJiRiwd
0Watpl70fE7t3Jrxoe49Jq
/MicFvJvZ4whpuZSBylkpodCiUQVwV/Rp/k70scVjKeeeBUtVH
HGmDMMELOml8H8YbI91W7mK8T43xbIrKNYleR6yPqoixKvt3Pc57o1VdznK5VVVU9LI
/5S/O
k1StFn
+MeOMxkKtytfS1ewkk1l+Yp146tXOPe29Gz94grQw14bjGMWKGKOONjWMaifIpekfX
tldSJTDdj95K
/npzgpksosmE7BJWWez+xFSud5OtebyDMFUmO1lCYbOkDL6kWBP8Wh5Wk5Ly
NUoNMmN8LcfhlS1TyObr31cr3zR2kbLLKqy
/ryP7S7pts0se9NP05Hppq5yrRz/yceXslQfg
uR8M8XZfibYW1q2Ou4B01Ghj2so6YqlB75qRY7v42hc9u5ZNLdOtIj0bBExn97b02V
+xv8lm
Ud3m7Lo3O516N9RZ8xbTJW6Z2T7YRGNcR9
+PxNdeakfs5nOGia/nf9GkMEWD9meRx+HqEFiS
5XzfJI70
+3vStuokk2xNsfdd2dX9turWa/2tXRCku/yPctymJpcczHi7wpd4riu9+30J+MOk
p473L0lt
+xgXIba/vJkbNZ2f90rUe7qh85XPSxpbVU/q+dw0q2EKasHOByrFfHz8Kmtp/ZFY
hfcQO1bIjImMI3
+fRkcncBJFBChGkKwtPAFNgo84syfjvDXDcXfq3qaWmtrOif2ll1hlmh3d
qeZm365Wb37VRWtTc5NujlRbXzL
+Sz7leecSznFeRuwEs2cgvVfftoK3I0Mdkux77F46yk+k
FCylauksb45pXrDE5ZlfFG9mtfNrnn8OAOAOAOAOAZYW
/t41sW/sq07kssf0DX/2w6qX+3xt
E
+wKBJnFJYOy1/a7vLaxTl6eofIVMpntnLK6ZgNGHXxrzBJUTUTlW4qy1IFlXwycMScSz1ub
wRgKPAQRmy7hrBnAAKkfwRkpHNRD7Oc1ohC
+IRefcPMYF8Ahybj45CBnxtq0WnMBVXOXE1YR
C2ueJq3QOU9sZtTt06UWYNEFMNlYSarroZkaSv0abMYdlqwBSgtSMSQg0vwqMTI1
+rT5nZD7
X
+XVOLeQZ4r6P9rexlhm5jO5Kx8LFna6JqNc5X7WSMa1vVyvRFRfQqGWpEU8Pbw4R1eVCTXw
xDIGSKOKxvYgn5yqObmYh1HheT8tOeT81Ng7JohgLznHx
/4uTep6ZvhSTHVcfUuRO5M2qj4J
rUbJJ9PpbJM6JO2urmrtk2bERzkRfkdPB8O00mtSxav0cif5wElUhWNEJa00ecI
+z+pqigyV
8lxRS4lGzEp13wWPK8nGCsZAmKAeeMkkzhVROq
+hgHkbk2H4DxvN5Dk3tvaWXtdVjsyPspam
7bdY21vpWNjXs6MY7YnWRzma9Yd2O7WNLuqCC28xJSZ1fNkUxe1BVvsu
/UhYSqKODNbmw8U2
bkidoLZFZR0Id1teR7U4aXDY6DEIwpYRhaMo35uFElzlcuqnlz5M5
/kfJnL7HKskxkTpEbHF
G30jhj1SNmv
+Soi6ucvVXKvomiJbbZTsx1Zjb1qVrvehW0svI7BNtdotEq1b2mI67yFhap3r
jtym0znEistxfimBe2wmRzl2SOLcY3JXZeW0
/NEYnCeACccJgJ0+s2/J9lzqt6gpyMr62hFX
d1
+5XWnaSJ6FDXkyxo7QOkG2uw5r6xImCERRmrhlX2nEWA9AhaicHp0DVgk1SMCtURwCHOvb
fXbG8ejbR7cO0rW90bG3Bt
/rTVti2L7GrZk9xQSwO4yFarS5i9ox2HNEFaPV6Fd1DD5pC2JV
if5nnSTS3EIVeAFAb67YzbfqA0pJ7W9TrJ72
/t2rXONexq2ReZgkXuj7oCJsTF6y3w5JICfI
x
/rtpxP5otWBYb7P8ZhozHV7G5AOqvfXbHZHQXpKuu6bW952bt3t/tRVuw8l9jVtHfqFBK3p
ftClkLYvRopDmKPxP0aQa6w1R5pjSNixR6P4DzTS1a4CkB17b67Y3jFNHnK0rW90Lbg2
/wBa
atsU72NWzJ7iglgfbSQrsClzF8uOw5oKaPV9undRLfNIQpVif5npZJpbKELdgDIHsJ7mOyaj
tBd4brq3Y
/2vZtP/AHH2y2hVdSX6P0K9+3dTq/peayyI1T6NIqud4+7+kSBoTqPXVyRVJVHy
/Ac4GFiEDIC3e5jsmi9z3/E2LY/yMfhO3/3QFWxhv+j9CqfTIJ126CwG69OmLzSyrlC1b9H7
Ne1Tn5pQYaskHzfLvZrkkCAgIHu84A4A4A4A4Bh9dK3WoHbrZDFNDoC3bHyDr10gOr13sN
/a
Iq3mVg0di9qNLlEmCYLErgviU4mmwMzrtLHcJScLnWTgawN4wr0pIgAWjT3PRjJYWqdcityo
4vKd3Ec9kOsIqVRgtN3u2OQCrQW5Lp
+x3k+tT0wucYLgh6NyC5eUxlb55KJOsPEfgXAM2JZv
pV9j9lHYf1e2NG41V1NaiaRLNnbR2ZmTvK5fYGFzIz6w2wimQH5xejy2ev64ZraVHubWIsZ6
o9AWYnOJJGeTnlF0XVC
+8Y5DkOJchp8lxSomRpTtljVU1TVvwVPkqKrV/BVJiddV0TdWNo3L
Nr0qOCUVVKm4JTaM7rGUutpx2MR2iD5Qz2kzlNaxrbUjPLKzf4W9N7155Y6KWZa3qEJyQxUS
dgM1ZU
+CdTuBd+8nIR1I24nExy5VlRsfuLW3es2v6kmkG1Fjdo1Uiasf1dVXREaUA3v7GbN0
/wB4+vXRLWFCkhcfs7tPqjVjZq0JAianyx7ejEfg/WLch+QOpCJC3tKSURXdpUxLwASBwnJa
/AgCkJGEIZSrquqnT/kXJczyrJPyubmfNZe5yoiq5WMR7lerI2qq7GblVUai6IeOfscz8f8A
H0
+P7f8Az/U3j+z/ABqMY/sxzgsRv92H/vh/bq/x/u3L+evCeAX/AOtP94qxv9X72xfystyO
AOp3
/LPdaf4/9N/6hCueANVf1Tas/H/fn5ivvVuAOjr9LL7bj8f+8H5de67gDqd/uN1p/j/0
3/o2654BgD2xfpZdln+r93I/LrY3AF+fvFbVfj/+9W/lZVZwD7PvgDgDgDgDgHkC7LP8whXP
4AOp3
+ph034Aqz94r7Kn8AG1X8rKg+AUA2Z/XX+6O/gA7Bfk80a4Bv8ATb9Cjty//RV+cPsP
4BgD25frr9eH8f6E/k8+3V4BgD2N/wDv0/j/AFOf/ajgG/3Yf++H9ur/AB/u3L+evCeAX/60
/wB4qxv9X72xfystyOAOp3/LPdaf4/8ATf8AqEK54A1V/VNqz8f9+fmK+9W4A6Ov0svtuPx/
7wfl17ruAOp3
+43Wn+P/AE3/AKNuueAYA9sX6WXZZ/q/dyPy62NwBfn7xW1X4/8A71b+VlVn
APs
++AOAOAOAQBem0dE62e1vrPOfaXu31taj8rGZjLfQodEvSPf9u2D7Kj0j+lmv9We42v3j
Ysm9IgkO9Xb
/AFt3QefR/PA8wPZZ/mEK5/AB1O/1MOm/ALvl6268VXtV0lwd+2qkBs26f6fl
OrLsci1btpwpq0rC2M1RqjXCv4paGzTKreNfNS7gkxaFgemCBSaQuEmkhk0jyBEQIb6xqHMC
P9y
+q+mqf2H7ie1jYPeSP0nTm6nXBY+ns6bpLTB61uoBunFS0LTKSyE0nQ2qF3uOQKXeo0+G
mHNzC2OsgdX1O1ITzFnyMKwNP7H1Eisa66t39Y51e8fgUJvSP9l0smN
+SxibmKK0xFd2LQ2Q
vCQyWStzxN25oVR
+iWi7jilq1U9tKZ0TMg1Zo2wB4i0wGUNjdZ1RdmO9lQbm11tbYFYyDU/f
+E73SnXi4tJ7spm03JnX07oDUcUjiqL7DvVGWayV/N1vXA7jZ58CKL2JzcV7s2JC1CuLOPzw
M4Lo6E9eNr7l7A6JYeySQRqbbwdj5O2jS
+LdCraNpplsKkyN7VFgatVfsW9WhFdfNjrghxey
r
/h/a4zKPc0fMrOQgWsJY2x8CxgaP799Z1RILi6wbQsXa2wGeQac7/7qb3Rao6d0nuzaq07x
Z9gN7IbulK44lrnXh6nNmwKv6VWrGiGvE
+GwOzEFxkLSYrLblbm3NasCX6h1EiurVwamTqC3
vH9hITvp3vbd9icOmMTYm5tirRFdo
+qHfF4j0TjUhZ5vOWiy4+3tEeJVIpQlOQpnlMtAaUjJ
BgIjAKgdORlZm
/bc9c7dZs8kEITF7Px2x4qgg1S2Ff1mWPKtae1iZ7aZrGtqRqJtfrWsOQSm
LUG6ZXZYGx1UxuPJ3KRKkhrazrvCBo
/qx17QR7uyud4K22W99xInYC0btTRM+m3iGvBDw8W7
3dvMsqiXJpLNU0truwKwlvbUujMjantiRvrG
+1WrQubYhXuihEwgc/15aRU1rXXunXXLDtvI
/dtx9PNwPmzN0FM1aHx1xcm7dKs+wqHVdDpYzkT6VtFWyBQ0bCuD4WmE7vbqY1R9GpUN6NHI
m1WEBqvpFTWqlwaoagm7eR
+d7B0rIIBvihrJNWh7NKpTTWvHVDWHSc6PTyhST6Tpq8j8qmzo
jlzY4OB5hi9Thewt6Vww0Ob0mAoB2OdGtZvul
+w1K2bu/IIAm2j7nra7Loq4QbTiwtg7MWSq
5apnEezrBW2vlRWU82tdUgiEWw6Sdc
+MCUxSTHmFycVTKjbUC5clAzA7StRIrq1cFXzqC3vH
9hITvpH
/ALq/sTh0xibE3NsVaIrtH1QxV4j0TjUhZ5vOWiy4+3tEeJVIpQlOQpnlMtAaUjJB
gIjAPsHOAOAOAOAYg7z6rbHSHae0r71
/iGwDtZtp6gUnRGtFqUptCqperNaNjqWsXbiZsNv7
t1Cv2BqGP7Ca
/oZBsfFHFOyghl1mqG6OSdEpi/y1xCGRAc/t31f37f3aVE93YdL6fbapYtYN
IqUVx
+Sv80R2EZKta+32gt/504Jmprr95jY4+7U5Vbg2NJonYCk+THJ06ghKhGa4kgSBfumV
323twpQwM64KWo6X7P6i7m3VKWada1TbWq8HvU9711kTUTLIFNKoX7oRHZ
+SOOsUShxbFEZJ
HajQQhkRzE59cJMY9QV7Au
/2E1bO7x0F3hpSrWL3RZtwagbLVbXUa9TZ2T3FO7ApeaxOIsXr
MicGiPtHq8gd06fzS5WlRp
/meM40ssIh4Al/YWtm65aCvCoHiEx+y2i1qfsutnSuZZOZVWEV
n7dOYW9RhdCZLZUFY5PNq8j8qTOgkC18Z21wdWlMeNUkTHqCiyhgUg0G172AiVp7B7QbDzzY
B6kF41
/r9TkMgG0YtQF97QWCa5yPYaUlus5dNFoJBdcm33rM9jXoTYxtR8wWI2duSOK6RiVv
BsXigEAU3qfe0a3JhUnd6isBm9h7f7hX9YN4PNtw5802nNE3gh2vBTsO1g1YS2
+//RDb9q+v
MFLn08Q05XTxIz2SwzF00f8A3W4GzcCz++B2yKWVUqbrpQNwS1Suj9uMlgbLayEaLOOz9IxV
Q41K9t9T1aj30sKB1S0R
/YOUx5C4SZ5MRzNMmb4AW3ij+HJ1Z5NGAOgI1c+bGOrJvqWDfQ6s
tKLAYJkppexZN6
/O6/qxB197Q6qxOpyH+NSG24/L7AgMgu5hSuKkUpcW5UjbF6ol5cDMJ/Og
Zwaa9eOz
+gPXp1X1E/RWP7G2t16bP3zddoQLXWYx8txsuK3bAd/KyZW+mX7YlXrzCXCQRdTu
CwOrwVJnWLJgtTO7
+SPXLi25E5Aav6L1bO6k1/OZrJYvaktnewG4mwimHHubO8PEHZ9qNv71
2ZicDlzjGnB7iR9gQeJW2haZHhkc3liLfUasDY6OiAKdwUgUg68dH9uNS9rr5frjten7hqmb
6wUazDtCE0O903Kra2HV7Vb47E3NLHxlcdrLsTRWQDm2zL3JpIW3sDPEndTP2xFF0ceQxda3
LwLvzWrZ2779a03W3sXmKyr
/AFA3hq2XSX1NnK9IndwXR17SyumL0Y9wLkC/3FH6OlKjzSVI
cjSel
+BUaSYpSAUAVf7Adb5VY9+6x32kqTZ+8oTUtP7T1DIa80y2pcdS79KlV8zTUyZw6ZnT
grabTNokVPsLRrm
+oX1qPm56kb07sSghjXgIUL2cCkHYF1Tbw7xxjrweZLbev7vduu+gHYzr
3tBMZE7S2Ms9h7Hbt9fbfrMhnldN0Lpr0z6f
/W3zrs75MbI8agYjgjQNZx2MN4APR9wBwBwB
wBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwB
wBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwBwB
wBwBwBwD
/9k=</Base64Data>