总访问量: PV

DataScience && DataMining && BigData

1.tTensorboard

Windows下坑太多......

在启动TensorBoard的过程,还是遇到了一些问题。接下来简单的总结一下我遇到的坑。

       1、我没找不到log文件?!
             答:所谓的log文件其实就是在你train过程中保存的关于你train的所有详尽信息。
                    文件的格式是:events.out.tfevents.1493741531.DESKTOP-CJI9GBL
                    你只需要找出events.out.tfevents开头的文件即可,后面的那个是跟你的电脑有关的一个标识,不用管。
  2.打开了TensorBoard,但是没有显示。例如下面的情况:
  
       这种情况,其实我也遇到过。明明能打开的,但是为什么就是不对呢?
  原因主要有这几个:
       1、路径不对。在路径不对的情况下,按照上面的步骤也能打开TensorBoard,但不是我想要的信息。
       2、文件出错。在train阶段,发生了错误,所以没法在TensorBoard上显示出train的信息。
 

查看指定端口并kill

 也可以使用lsof命令:

lsof -i:8888

若要关闭使用这个端口的程序,使用kill + 对应的pid

kill -9 PID号


启动jupyter notebook 

 

 

 通过windows远程调用写一个Demo

 

启动tensorboard并通过web访问:

 sudo tensorboard --logdir='.' --port=8811

 

"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
#-*-coding:utf8-*-

import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = 'layer%s' % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            tf.summary.histogram(layer_name + '/weights', Weights)
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            tf.summary.histogram(layer_name + '/biases', biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.summary.histogram(layer_name + '/outputs', outputs)
    return outputs

 

# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))
    tf.summary.scalar('loss', loss)

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()
merged = tf.summary.merge_all()

writer = tf.summary.FileWriter("./tensorlogs/", sess.graph)
init = tf.global_variables_initializer()
sess.run(init)

下面代码在python3中正常,在python2中需要更改

for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)

# direct to the local dir and run this in terminal:
# $ tensorboard --logdir logs

web页面显示

 

 

 
 
 
 
posted @ 2017-12-22 18:05  CJZhaoSimons  阅读(505)  评论(0编辑  收藏  举报