总访问量: PV

DataScience && DataMining && BigData

MapRedece(多表关联)

多表关联:

准备数据

********************************************

工厂表:

Factory  Addressed
BeijingRedStar 1
ShenzhenThunder 3
GongzhouHonDa 2
BeijingRising 1
GuangzhouDevelopmentBank 2
Tencent 3

 

 

 

 

 

 

 

************************************** ****

      地址表:

Address AddressName
1 Beijing
2 Guangzhou
3 ShenZhen
4 Xian

 

 

 

 

 

 

****************************************** 

工厂-地址表:(中间的数据在结果中不显示)

Factory  Addressed AddressName
BeijingRedStar 1 Beijing
ShenzhenThunder 3 ShenZhen
GongzhouHonDa 2 Guangzhou
BeijingRising 1 Beijing
GuangzhouDevelopmentBank 2 Guangzhou
Tencent 3 ShenZhen

 

 

 

 

 

 

 

解决思路:根据工厂表中的工厂地址ID和地址表的工厂ID相关,组合成工厂-地址表,可以达到多表关联。

    步骤:

  •     map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。
  •     reduce解析map输出的结果,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。

 (1)自定义Mapper任务  

 1 private static class MyMapper extends Mapper<Object, Text, Text, Text> {
 2         Text k2= new Text();
 3         Text v2= new Text();
 4         @Override
 5         protected void map(Object k1, Text v1,
 6                 Mapper<Object, Text, Text, Text>.Context context)
 7                 throws IOException, InterruptedException {
 8             String line = v1.toString();//每行文件
 9             String relationType = new String();
10             //首行数据不处理
11             if (line.contains("factoryname")==true||line.contains("addressed")==true) {
12                 return;
13             }
14             //处理其他行的数据
15             StringTokenizer item = new StringTokenizer(line);
16             String mapkey = new String();
17             String mapvalue = new String();
18             
19             int i=0;
20             while (item.hasMoreTokens()) {
21                 String tokenString=item.nextToken();//读取一个单词
22                 //判断输出行所属表,并进行分割
23                 if (tokenString.charAt(0)>='0'&&tokenString.charAt(0)<='9') {
24                     mapkey = tokenString;
25                     if (i>0) {
26                         relationType="1";
27                     }else {
28                         relationType="2";
29                     }
30                     continue;
31                 }
32                 mapvalue+=tokenString+" ";//存储工厂名,以空格隔开
33                 i++;
34             }
35                 k2 = new Text(mapkey);
36                 v2 =new Text(relationType+"+"+mapvalue);
37                 context.write(k2,v2);//输出左右表
38             
39     }
40 }

(2)自定义Reduce任务  

 1 private static class MyReducer extends Reducer<Text, Text, Text, Text> {
 2         Text k3 = new Text();
 3         Text v3 = new Text();
 4 
 5         @Override
 6         protected void reduce(Text k2, Iterable<Text> v2s,
 7                 Reducer<Text, Text, Text, Text>.Context context)
 8                 throws IOException, InterruptedException {
 9             if (0 == time) {
10                 context.write(new Text("factoryname"), new Text("addressed"));
11                 time++;
12             }
13             int factoryNum=0;
14             String [] factory=new String[10];
15             int addressNum=0;
16             String [] address = new String[10];
17             Iterator item=v2s.iterator();
18             while (item.hasNext()) {
19                 String record = item.next().toString();
20                 int len =record.length();
21                 int i=2;
22                 if (len==0) {
23                     continue;
24                 }
25                 //取得左右表标识
26                 char relationType =record.charAt(0);
27                 //左表
28                 if ('1' == relationType) {
29                     factory[factoryNum]=record.substring(i);
30                     factoryNum++;
31                 }
32                 //右表
33                 if ('2'==relationType) {
34                     address[addressNum]=record.substring(i);
35                     addressNum++;
36                 }
37             }
38             // factoryNum和addressNum数组求笛卡尔积
39             if (0 != factoryNum && 0 != addressNum) {
40                 for (int i = 0; i < factoryNum; i++) {
41                     for (int j = 0; j < addressNum; j++) {
42                         k3 = new Text(factory[i]);
43                         v3 = new Text(address[j]);
44                         context.write(k3, v3);
45                     }
46                 }
47             }
48         }
49     }

(3)主函数

 1 public static void main(String[] args) throws Exception {
 2         //必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
 3         //2将自定义的MyMapper和MyReducer组装在一起
 4         Configuration conf=new Configuration();
 5         String jobName=MultiTableLink.class.getSimpleName();
 6         //1首先寫job,知道需要conf和jobname在去創建即可
 7         Job job = Job.getInstance(conf, jobName);
 8         
 9         //*13最后,如果要打包运行改程序,则需要调用如下行
10         job.setJarByClass(MultiTableLink.class);
11         
12         //3读取HDFS內容:FileInputFormat在mapreduce.lib包下
13         FileInputFormat.setInputPaths(job, new Path(args[0]));
14         //4指定解析<k1,v1>的类(谁来解析键值对)
15         //*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
16         job.setInputFormatClass(TextInputFormat.class);
17         //5指定自定义mapper类
18         job.setMapperClass(MyMapper.class);
19         //6指定map输出的key2的类型和value2的类型  <k2,v2>
20         //*下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
21         job.setMapOutputKeyClass(Text.class);
22         job.setMapOutputValueClass(Text.class);
23         //7分区(默认1个),排序,分组,规约 采用 默认
24         
25         //接下来采用reduce步骤
26         //8指定自定义的reduce类
27         job.setReducerClass(MyReducer.class);
28         //9指定输出的<k3,v3>类型
29         job.setOutputKeyClass(Text.class);
30         job.setOutputValueClass(Text.class);
31         //10指定输出<K3,V3>的类
32         //*下面这一步可以省
33         job.setOutputFormatClass(TextOutputFormat.class);
34         //11指定输出路径
35         FileOutputFormat.setOutputPath(job, new Path(args[1]));
36         
37         //12写的mapreduce程序要交给resource manager运行
38         job.waitForCompletion(true);
39     }

完整的源代码--多表链接 

  1 package Mapreduce;
  2 
  3 import java.io.IOException;
  4 import java.util.Iterator;
  5 import java.util.StringTokenizer;
  6 
  7 import org.apache.hadoop.conf.Configuration;
  8 import org.apache.hadoop.fs.Path;
  9 import org.apache.hadoop.io.Text;
 10 import org.apache.hadoop.mapreduce.Job;
 11 import org.apache.hadoop.mapreduce.Mapper;
 12 import org.apache.hadoop.mapreduce.Reducer;
 13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 17 
 18 import com.sun.jdi.Value;
 19 
 20 public class MultiTableLink {
 21     private static int time = 0;
 22 
 23     public static void main(String[] args) throws Exception {
 24         //必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
 25         //2将自定义的MyMapper和MyReducer组装在一起
 26         Configuration conf=new Configuration();
 27         String jobName=MultiTableLink.class.getSimpleName();
 28         //1首先寫job,知道需要conf和jobname在去創建即可
 29         Job job = Job.getInstance(conf, jobName);
 30         
 31         //*13最后,如果要打包运行改程序,则需要调用如下行
 32         job.setJarByClass(MultiTableLink.class);
 33         
 34         //3读取HDFS內容:FileInputFormat在mapreduce.lib包下
 35         FileInputFormat.setInputPaths(job, new Path(args[0]));
 36         //4指定解析<k1,v1>的类(谁来解析键值对)
 37         //*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
 38         job.setInputFormatClass(TextInputFormat.class);
 39         //5指定自定义mapper类
 40         job.setMapperClass(MyMapper.class);
 41         //6指定map输出的key2的类型和value2的类型  <k2,v2>
 42         //*下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
 43         job.setMapOutputKeyClass(Text.class);
 44         job.setMapOutputValueClass(Text.class);
 45         //7分区(默认1个),排序,分组,规约 采用 默认
 46         
 47         //接下来采用reduce步骤
 48         //8指定自定义的reduce类
 49         job.setReducerClass(MyReducer.class);
 50         //9指定输出的<k3,v3>类型
 51         job.setOutputKeyClass(Text.class);
 52         job.setOutputValueClass(Text.class);
 53         //10指定输出<K3,V3>的类
 54         //*下面这一步可以省
 55         job.setOutputFormatClass(TextOutputFormat.class);
 56         //11指定输出路径
 57         FileOutputFormat.setOutputPath(job, new Path(args[1]));
 58         
 59         //12写的mapreduce程序要交给resource manager运行
 60         job.waitForCompletion(true);
 61     }
 62 
 63     private static class MyMapper extends Mapper<Object, Text, Text, Text> {
 64         Text k2= new Text();
 65         Text v2= new Text();
 66         @Override
 67         protected void map(Object k1, Text v1,
 68                 Mapper<Object, Text, Text, Text>.Context context)
 69                 throws IOException, InterruptedException {
 70             String line = v1.toString();//每行文件
 71             String relationType = new String();
 72             //首行数据不处理
 73             if (line.contains("factoryname")==true||line.contains("addressed")==true) {
 74                 return;
 75             }
 76             //处理其他行的数据
 77             StringTokenizer item = new StringTokenizer(line);
 78             String mapkey = new String();
 79             String mapvalue = new String();
 80             
 81             int i=0;
 82             while (item.hasMoreTokens()) {
 83                 String tokenString=item.nextToken();//读取一个单词
 84                 //判断输出行所属表,并进行分割
 85                 if (tokenString.charAt(0)>='0'&&tokenString.charAt(0)<='9') {
 86                     mapkey = tokenString;
 87                     if (i>0) {
 88                         relationType="1";
 89                     }else {
 90                         relationType="2";
 91                     }
 92                     continue;
 93                 }
 94                 mapvalue+=tokenString+" ";//存储工厂名,以空格隔开
 95                 i++;
 96             }
 97                 k2 = new Text(mapkey);
 98                 v2 =new Text(relationType+"+"+mapvalue);
 99                 context.write(k2,v2);//输出左右表
100             
101     }
102 }
103     private static class MyReducer extends Reducer<Text, Text, Text, Text> {
104         Text k3 = new Text();
105         Text v3 = new Text();
106 
107         @Override
108         protected void reduce(Text k2, Iterable<Text> v2s,
109                 Reducer<Text, Text, Text, Text>.Context context)
110                 throws IOException, InterruptedException {
111             if (0 == time) {
112                 context.write(new Text("factoryname"), new Text("addressed"));
113                 time++;
114             }
115             int factoryNum=0;
116             String [] factory=new String[10];
117             int addressNum=0;
118             String [] address = new String[10];
119             Iterator item=v2s.iterator();
120             while (item.hasNext()) {
121                 String record = item.next().toString();
122                 int len =record.length();
123                 int i=2;
124                 if (len==0) {
125                     continue;
126                 }
127                 //取得左右表标识
128                 char relationType =record.charAt(0);
129                 //左表
130                 if ('1' == relationType) {
131                     factory[factoryNum]=record.substring(i);
132                     factoryNum++;
133                 }
134                 //右表
135                 if ('2'==relationType) {
136                     address[addressNum]=record.substring(i);
137                     addressNum++;
138                 }
139             }
140             // factoryNum和addressNum数组求笛卡尔积
141             if (0 != factoryNum && 0 != addressNum) {
142                 for (int i = 0; i < factoryNum; i++) {
143                     for (int j = 0; j < addressNum; j++) {
144                         k3 = new Text(factory[i]);
145                         v3 = new Text(address[j]);
146                         context.write(k3, v3);
147                     }
148                 }
149             }
150         }
151     }
152 }
多表链接

程序运行结果

(1)  数据准备:新建文件夹,并在文件夹内新建factory文件和address文件

   

[root@neusoft-master multitable]# vi factory
BeijingRedStart 1
ShenzhenThunder 3
GuangzhouHonDa 2
BeijingRising 1
Tecent 3
BackofBeijing 1

      

[root@neusoft-master multitable]# vi addredd
1 Beijing
2 Guangzhou
3 Shenzhen
4 Xian

(2)将文件夹上传到HDFS中
[root@neusoft-master filecontent]# hadoop dfs -put multitable/ /neusoft/

(3)打成jar包并指定主类,提交至Linux中

[root@neusoft-master filecontent]# hadoop jar MultiTableLink.jar /neusoft/multitable  /out14

 

(4)查看结果

[root@neusoft-master filecontent]# hadoop dfs -cat /out14/part-r-00000

    

 

 

End~

 

posted @ 2017-02-22 20:24  CJZhaoSimons  阅读(695)  评论(0编辑  收藏  举报