总访问量: PV

DataScience && DataMining && BigData

MapReduce的计数器

 

 第一部分.Hadoop计数器简述

hadoop计数器:

      可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理。 内置计数器(MapReduce相关、文件系统相关和作业调度相关),

也可以通过http://master:50030/jobdetails.jsp查看

MapReduce的输出:

    

    运行jar包的详细步骤:

[root@neusoft-master filecontent]# hadoop jar Traffic.jar /data/HTTP_20130313143750.dat /out2
17/02/01 19:58:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/02/01 19:58:18 INFO client.RMProxy: Connecting to ResourceManager at neusoft-master/192.168.191.130:8080
17/02/01 19:58:18 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/02/01 19:58:19 INFO input.FileInputFormat: Total input paths to process : 1
17/02/01 19:58:19 INFO mapreduce.JobSubmitter: number of splits:1
17/02/01 19:58:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1485556908836_0009
17/02/01 19:58:19 INFO impl.YarnClientImpl: Submitted application application_1485556908836_0009
17/02/01 19:58:19 INFO mapreduce.Job: The url to track the job: http://neusoft-master:8088/proxy/application_1485556908836_0009/
17/02/01 19:58:19 INFO mapreduce.Job: Running job: job_1485556908836_0009
17/02/01 19:58:26 INFO mapreduce.Job: Job job_1485556908836_0009 running in uber mode : false
17/02/01 19:58:26 INFO mapreduce.Job: map 0% reduce 0%
17/02/01 19:58:32 INFO mapreduce.Job: map 100% reduce 0%
17/02/01 19:58:38 INFO mapreduce.Job: map 100% reduce 100%
17/02/01 19:58:38 INFO mapreduce.Job: Job job_1485556908836_0009 completed successfully
17/02/01 19:58:38 INFO mapreduce.Job: Counters: 49
File System Counters  1.文件系统计数器,由两类组成,FILE类是文件系统与Linux(磁盘)交互的类,HDFS是文件系统与HDFS交互的类(本质上都是与磁盘数据打交道)
FILE: Number of bytes read=1015
FILE: Number of bytes written=220657
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=2334
HDFS: Number of bytes written=556
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters   2.作业计数器  3.框架本身的计数器
Launched map tasks=1   加载map任务
Launched reduce tasks=1  加载reduce任务
Data-local map tasks=1   数据本地化
Total time spent by all maps in occupied slots (ms)=3115   所有map任务在被占用的slots中所用的时间------在yarn中,程序打成jar包提交给resourcemanager,nodemanager向resourcemanager申请资源,然后在nodemanager上运行, 而划分资源(cpu,io,网络,磁盘)的单位叫容器container,每个节点上资源不是无限的,因此应该将任务划分为不同的容器,job在运行的时候可以申请job的数量,之后由nodemanager确定哪些任务可以执行map,那些可以执行reduce等,从而由slot表示,表示槽的概念。任务过来就占用一个槽。

Total time spent by all reduces in occupied slots (ms)=3095  所有reduce任务在被占用的slots中所用的时间
Total time spent by all map tasks (ms)=3115  所有map执行时间
Total time spent by all reduce tasks (ms)=3095   所有reduce执行的时间
Total vcore-seconds taken by all map tasks=3115  
Total vcore-seconds taken by all reduce tasks=3095
Total megabyte-seconds taken by all map tasks=3189760
Total megabyte-seconds taken by all reduce tasks=3169280
Map-Reduce Framework
Map input records=22  //输入的行数 或键值对数目
Map output records=22  // 输出的键值对
Map output bytes=965
Map output materialized bytes=1015
Input split bytes=120
Combine input records=0   规约  第五步
Combine output records=0
Reduce input groups=21   输入的是21个组
Reduce shuffle bytes=1015
Reduce input records=22   输入的行数或键值对数目
Reduce output records=21
Spilled Records=44
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=73
CPU time spent (ms)=1800
Physical memory (bytes) snapshot=457379840
Virtual memory (bytes) snapshot=3120148480
Total committed heap usage (bytes)=322437120
Shuffle Errors       4.shuffle错误
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters    5.输入计数器
Bytes Read=2214
File Output Format Counters   6.输出的计数器
Bytes Written=556

运行结果截图:

               

 

通过查看http://neusoft-master:8088/可得到详细的job信息

 

   上述页面是resourcemanager的集群,上面显示了所有的application应用用户层面看是job作业,resourcemanager层面看是applicaton应用

 第二部分 自定义计数器

核心代码:

 

//计数器使用~解决:判断下输入文件中有多少hello
Counter counterHello = context.getCounter("Sensitive words","hello");
//假设hello为敏感词
            if(line != null && line.contains("hello")){
                counterHello.increment(1L);
            }
//计数器代码结束

 

    示例代码:

  1 package Mapreduce;
  2 
  3 import java.io.IOException;
  4 
  5 import org.apache.hadoop.conf.Configuration;
  6 import org.apache.hadoop.fs.Path;
  7 import org.apache.hadoop.io.LongWritable;
  8 import org.apache.hadoop.io.Text;
  9 import org.apache.hadoop.mapreduce.Counter;
 10 import org.apache.hadoop.mapreduce.Job;
 11 import org.apache.hadoop.mapreduce.Mapper;
 12 import org.apache.hadoop.mapreduce.Reducer;
 13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 17 
 18 /**
 19  *
 20  * 计数器的使用及测试
 21  */
 22 public class MyCounterTest {
 23     public static void main(String[] args) throws Exception {
 24         //必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
 25         //2将自定义的MyMapper和MyReducer组装在一起
 26         Configuration conf=new Configuration();
 27         String jobName=MyCounterTest.class.getSimpleName();
 28         //1首先寫job,知道需要conf和jobname在去創建即可
 29         Job job = Job.getInstance(conf, jobName);
 30         
 31         //*13最后,如果要打包运行改程序,则需要调用如下行
 32         job.setJarByClass(MyCounterTest.class);
 33         
 34         //3读取HDFS內容:FileInputFormat在mapreduce.lib包下
 35         FileInputFormat.setInputPaths(job, new Path("hdfs://neusoft-master:9000/data/hellodemo"));
 36         //4指定解析<k1,v1>的类(谁来解析键值对)
 37         //*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
 38         job.setInputFormatClass(TextInputFormat.class);
 39         //5指定自定义mapper类
 40         job.setMapperClass(MyMapper.class);
 41         //6指定map输出的key2的类型和value2的类型  <k2,v2>
 42         //*下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
 43         job.setMapOutputKeyClass(Text.class);
 44         job.setMapOutputValueClass(LongWritable.class);
 45         //7分区(默认1个),排序,分组,规约 采用 默认
 46         
 47         //接下来采用reduce步骤
 48         //8指定自定义的reduce类
 49         job.setReducerClass(MyReducer.class);
 50         //9指定输出的<k3,v3>类型
 51         job.setOutputKeyClass(Text.class);
 52         job.setOutputValueClass(LongWritable.class);
 53         //10指定输出<K3,V3>的类
 54         //*下面这一步可以省
 55         job.setOutputFormatClass(TextOutputFormat.class);
 56         //11指定输出路径
 57         FileOutputFormat.setOutputPath(job, new Path("hdfs://neusoft-master:9000/out3"));
 58         
 59         //12写的mapreduce程序要交给resource manager运行
 60         job.waitForCompletion(true);
 61     }
 62     private static class MyMapper extends Mapper<LongWritable, Text, Text,LongWritable>{
 63         Text k2 = new Text();
 64         LongWritable v2 = new LongWritable();
 65         @Override
 66         protected void map(LongWritable key, Text value,//三个参数
 67                 Mapper<LongWritable, Text, Text, LongWritable>.Context context) 
 68                 throws IOException, InterruptedException {
 69             String line = value.toString();
 70             //计数器使用~解决:判断下输入文件中有多少hello  这里仅仅是举例,如果有很多的hello可能显示的还是如此结果
 71             Counter counterHello = context.getCounter("Sensitive words","hello");//假设hello为敏感词
 72             if(line != null && line.contains("hello")){
 73                 counterHello.increment(1L);
 74             }
 75             //计数器代码结束
 76             String[] splited = line.split("\t");//因为split方法属于string字符的方法,首先应该转化为string类型在使用
 77             for (String word : splited) {
 78                 //word表示每一行中每个单词
 79                 //对K2和V2赋值
 80                 k2.set(word);
 81                 v2.set(1L);
 82                 context.write(k2, v2);
 83             }
 84         }
 85     }
 86     private static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
 87         LongWritable v3 = new LongWritable();
 88         @Override //k2表示单词,v2s表示不同单词出现的次数,需要对v2s进行迭代
 89         protected void reduce(Text k2, Iterable<LongWritable> v2s,  //三个参数
 90                 Reducer<Text, LongWritable, Text, LongWritable>.Context context)
 91                 throws IOException, InterruptedException {
 92             long sum =0;
 93             for (LongWritable v2 : v2s) {
 94                 //LongWritable本身是hadoop类型,sum是java类型
 95                 //首先将LongWritable转化为字符串,利用get方法
 96                 sum+=v2.get();
 97             }
 98             v3.set(sum);
 99             //将k2,v3写出去
100             context.write(k2, v3);
101         }
102     }
103 }

    运行:

   

   

  从上图中可以看到Sensitive words里面显示了hello的个数。

 

    第三部分  总结:

问:partition的目的是什么?
答:多个reducer task实现并行计算,节省运行实际,提高job执行效率。

问:什么时候使用自定义排序?
答:.....
问:如何使用自定义排序?
答:自定义个k2类型,覆盖compareTo(...)方法

问:什么时候使用自定义分组?
答:当k2的compareTo方法不适合业务的时候。
问:如何使用自定义分组?
答:job.setGroupingComparatorClass(...);

问:使用combiner有什么好处?
答:在map端执行reduce操作,可以减少map最终的数据量,减少传输到reducer的数据量,减轻网络压力。
问:为什么combiner不是默认配置?
答:因为有个算法不适合使用combiner。什么样的算法不适合?不符合幂等性。
问:为什么在map端执行了reduce操作,还需要在reduce端再次执行哪?
答:因为map端执行的是局部reduce操作,在reduce端执行全局reduce操作。

 

 

 

 

posted @ 2017-02-17 10:40  CJZhaoSimons  阅读(1954)  评论(0编辑  收藏  举报