机器学习中 TP FP TN FN的概念

二分类

在二分类问题中,TP FP TN FN 是非常清楚且易于理解的。

TP (True Positive) : 预测为 1 ,真实值也为 1 -> 真阳性

FP (False Positive): 预测为 1 ,真实值为 0 -> 假阳性

TN (True Negative): 预测为 0 ,真实值也为 0 -> 真阴性

FN (False Negative): 预测为 0 ,真实值为 1 -> 假阴性

多分类

多分类问题的 TP FP TN FN 可以通过混淆矩阵来说明。

例如 存在这样一个示例:

y_true = [0, 1, 2, 0, 1, 2]

y_pred = [0, 2, 1, 0, 0, 1]

其混淆矩阵可以如下所示,混淆矩阵中,数字代表的是预测情况的次数,比如第一个方格中的 2 就表示,预测为 0 且真实值也为0的出现的次数为 2 次。

image-20220606102202696

由混淆矩阵,各个类别的 TP FP TN FN 可以如下计算。

  • 类别 0:

    TP=2;
    TN=0+1+2+0=3;
    FP=0+1=1;
    FN=0+0=0;

image-20220606102642042

  • 类别 1:

    TP=0;
    TN=2+0+0+0=2;
    FP=0+2=2;
    FN=1+1=2;

    image-20220606103319786

  • 类别 2:

    TP=0;
    TN=2+0+1+0=3;
    FP=0+1=1;
    FN=0+2=2;

image-20220606103421858

posted @ 2022-06-07 14:12  jacknie23  阅读(858)  评论(0编辑  收藏  举报