在当代 Web 应用中,主观逻辑经常牵涉到与数据库的交互。 数据库驱动网站 在后台连接数据库服务器,从中取出一些数据,然后在 Web 页面用漂亮的格式展示这些数据。 这个网站也可能会向访问者提供修改数据库数据的方法。
由于先天具备 Python 简单而强大的数据库查询执行方法,Django 非常适合开发数据库驱动网站。 本章深入介绍了该功能: Django 数据库层。
在视图中进行数据库查询的笨方法
上一章详细介绍的那个在视图中输出 HTML 的笨方法(通过在视图里对文本直接硬编码HTML),在视图中也有笨方法可以从数据库中获取数据。 很简单:用现有的任何 Python 类库执行一条 SQL 查询并对结果进行一些处理。
在本例的视图中,我们使用了 MySQLdb 类库(可以从 http://www.djangoproject.com/r/python-mysql/ 获得)来连接 MySQL 数据库,取回一些记录,将它们提供给模板以显示一个网页:
import MySQLdb
def book_list(request):
db = MySQLdb.connect(user='me', db='mydb', passwd='secret', host='localhost')
cursor = db.cursor()
cursor.execute('SELECT name FROM books ORDER BY name')
names = [row[0] for row in cursor.fetchall()]
db.close()
return render_to_response('book_list.html', {'names': names})
这个方法可用,但很快一些问题将出现在你面前:
*我们将数据库连接参数硬行编码于代码之中。 理想情况下,这些参数应当保存在 Django 配置中。
*我们不得不重复同样的代码: 创建数据库连接、创建数据库游标、执行某个语句、然后关闭数据库。 理想情况下,我们所需要应该只是指定所需的结果。
*它把我们栓死在 MySQL 之上。 如果过段时间,我们要从 MySQL 换到 PostgreSQL,就不得不使用不同的数据库适配器(例如 psycopg 而不是 MySQLdb ),改变连接参数,根据 SQL 语句的类型可能还要修改SQL 。 理想情况下,应对所使用的数据库服务器进行抽象,这样一来只在一处修改即可变换数据库服务器。 (如果你正在建立一个开源的Django应用程序来尽可能让更多人使用的话,这个特性是非常适当的。)
正如你所期待的,Django数据库层正是致力于解决这些问题。 以下提前揭示了如何使用 Django 数据库 API 重写之前那个视图。
from mysite.books.models import Book
def book_list(request):
books = Book.objects.order_by('name')
return render_to_response('book_list.html', {'books': books})
MTV 开发模式
我们在前面章节提到过,Django 的设计鼓励松耦合及对应用程序中不同部分的严格分割。 遵循这个理念的话,要想修改应用的某部分而不影响其它部分就比较容易了。 在视图函数中,我们已经讨论了通过模板系统把业务逻辑和表现逻辑分隔开的重要性。 在数据库层中,我们对数据访问逻辑也应用了同样的理念。
把数据存取逻辑、业务逻辑和表现逻辑组合在一起的概念有时被称为软件架构的 Model-View-Controller (MVC)模式。 在这个模式中, Model 代表数据存取层,View 代表的是系统中选择显示什么和怎么显示的部分,Controller 指的是系统中根据用户输入并视需要访问模型,以决定使用哪个视图的那部分。
Django 紧紧地遵循这种 MVC 模式,可以称得上是一种 MVC 框架。 以下是 Django 中 M、V 和 C 各自的含义:
M ,数据存取部分,由django数据库层处理,本章要讲述的内容。
V ,选择显示哪些数据要显示以及怎样显示的部分,由视图和模板处理。
C ,根据用户输入委派视图的部分,由 Django 框架根据 URLconf 设置,对给定 URL 调用适当的 Python 函数。
由于 C 由框架自行处理,而 Django 里更关注的是模型(Model)、模板(Template)和视图(Views),Django 也被称为 MTV 框架 。在 MTV 开发模式中:
M 代表模型(Model),即数据存取层。 该层处理与数据相关的所有事务: 如何存取、如何验证有效性、包含哪些行为以及数据之间的关系等。
T 代表模板(Template),即表现层。 该层处理与表现相关的决定: 如何在页面或其他类型文档中进行显示。
V 代表视图(View),即业务逻辑层。 该层包含存取模型及调取恰当模板的相关逻辑。 你可以把它看作模型与模板之间的桥梁。
数据库配置
我们假定你已经完成了数据库服务器的安装和激活,并且已经在其中创建了数据库(例如,用 CREATE DATABASE 语句)。 如果你使用SQLite,不需要这步安装,因为SQLite使用文件系统上的独立文件来存储数据。
象前面章节提到的 TEMPLATE_DIRS 一样,数据库配置也是在Django的配置文件里,缺省 是 settings.py 。 打开这个文件并查找数据库配置:
DATABASE_NAME = ''
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''
配置示例:
DATABASE_NAME 将数据库名称告知 Django 。 例如:
DATABASE_NAME = 'mydb'
如果使用 SQLite,请对数据库文件指定完整的文件系统路径。例如:
在这个例子中,我们将SQLite数据库放在/home/django目录下,你可以任意选用最合适你的目录。
DATABASE_USER 告诉 Django 用哪个用户连接数据库。 例如: 如果用SQLite,空白即可。
DATABASE_PASSWORD 告诉Django连接用户的密码。 SQLite 用空密码即可。
DATABASE_HOST 告诉 Django 连接哪一台主机的数据库服务器。 如果数据库与 Django 安装于同一台计算机(即本机),可将此项保留空白。如果你使用SQLite,此项留空。
此处的 MySQL 是一个特例。 如果使用的是 MySQL 且该项设置值由斜杠( '/' )开头,MySQL 将通过 Unix socket 来连接指定的套接字,例如:
一旦在输入了那些设置并保存之后应当测试一下你的配置。 我们可以在`` mysite`` 项目目录下执行上章所提到的`` python manage.py shell`` 来进行测试。 (我们上一章提到过在,`` manager.py shell`` 命令是以正确Django配置启用Python交互解释器的一种方法。 这个方法在这里是很有必要的,因为Django需要知道加载哪个配置文件来获取数据库连接信息。)
输入下面这些命令来测试你的数据库配置:
>>> cursor = connection.cursor()
如果没有显示什么错误信息,那么你的数据库配置是正确的。 否则,你就得 查看错误信息来纠正错误。 表 5-2 是一些常见错误。
第一个应用程序
你现在已经确认数据库连接正常工作了,让我们来创建一个 Django app-一个包含模型,视图和Django代码,并且形式为独立Python包的完整Django应用。
在这里要先解释一些术语,初学者可能会混淆它们。 在第二章我们已经创建了 project , 那么 project 和 app 之间到底有什么不同呢?它们的区别就是一个是配置另一个是 代码:
一个project包含很多个Django app以及对它们的配置。
技术上,project的作用是提供配置文件,比方说哪里定义数据库连接信息, 安装的app列表, TEMPLATE_DIRS ,等等。
一个app是一套Django功能的集合,通常包括模型和视图,按Python的包结构的方式存在。
例如,Django本身内建有一些app,例如注释系统和自动管理界面。 app的一个关键点是它们是很容易移植到其他project和被多个project复用。
对于如何架构Django代码并没有快速成套的规则。 如果你只是建造一个简单的Web站点,那么可能你只需要一个app就可以了; 但如果是一个包含许多不相关的模块的复杂的网站,例如电子商务和社区之类的站点,那么你可能需要把这些模块划分成不同的app,以便以后复用。
但是,系统对app有一个约定: 如果你使用了Django的数据库层(模型),你 必须创建一个Django app。 模型必须存放在apps中。 因此,为了开始建造 我们的模型,我们必须创建一个新的app。
在`` mysite`` 项目文件下输入下面的命令来创建`` books`` app:
python manage.py startapp books
这个命令并没有输出什么,它只在 mysite 的目录里创建了一个 books 目录。 让我们来看看这个目录的内容:
books/
__init__.py
models.py
tests.py
views.py
这个目录包含了这个app的模型和视图。
使用你最喜欢的文本编辑器查看一下 models.py 和 views.py 文件的内容。 它们都是空的,除了 models.py 里有一个 import。这就是你Django app的基础。
在Python代码里定义模型
自省(运行时自动识别数据库)会导致过载和有数据完整性问题。 为了提供方便的数据访问API, Django需要以 某种方式 知道数据库层内部信息,有两种实现方式。 第一种方式是用Python明确地定义数据模型,第二种方式是通过自省来自动侦测识别数据模型。
第二种方式看起来更清晰,因为数据表信息只存放在一个地方-数据库里,但是会带来一些问题。 首先,运行时扫描数据库会带来严重的系统过载。 如果每个请求都要扫描数据库的表结构,或者即便是 服务启动时做一次都是会带来不能接受的系统过载。 (有人认为这个程度的系统过载是可以接受的,而Django开发者的目标是尽可能地降低框架的系统过载)。第二,某些数据库,尤其是老版本的MySQL,并未完整存储那些精确的自省元数据。
编写Python代码是非常有趣的,保持用Python的方式思考会避免你的大脑在不同领域来回切换。 尽可能的保持在单一的编程环境/思想状态下可以帮助你提高生产率。 不得不去重复写SQL,再写Python代码,再写SQL,…,会让你头都要裂了。
把数据模型用代码的方式表述来让你可以容易对它们进行版本控制。 这样,你可以很容易了解数据层 的变动情况。
SQL只能描述特定类型的数据字段。 例如,大多数数据库都没有专用的字段类型来描述Email地址、URL。 而用Django的模型可以做到这一点。 好处就是高级的数据类型带来更高的效率和更好的代码复用。
SQL还有在不同数据库平台的兼容性问题。 发布Web应用的时候,使用Python模块描述数据库结构信息可以避免为MySQL, PostgreSQL, and SQLite编写不同的CREATE TABLE。
第一个模型
我们来假定下面的这些概念、字段和关系:
一个作者有姓 ,有名及email地址。
出版商有名称,地址,所在城市、省,国家,网站。
书籍有书名和出版日期。 它有一个或多个作者(和作者是多对多的关联关系[many-to-many]), 只有一个出版商(和出版商是一对多的关联关系[one-to-many],也被称作外键[foreign key])
class Publisher(models.Model):
name = models.CharField(max_length=30)
address = models.CharField(max_length=50)
city = models.CharField(max_length=60)
state_province = models.CharField(max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()
class Author(models.Model):
first_name = models.CharField(max_length=30 )
last_name = models.CharField(max_length=40)
email = models.EmailField()
class Book(models.Model):
title = models.CharField(max_length=100)
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()
"id" serial NOT NULL PRIMARY KEY,
"name" varchar(30) NOT NULL,
"address" varchar(50) NOT NULL,
"city" varchar(60) NOT NULL,
"state_province" varchar(30) NOT NULL,
"country" varchar(50) NOT NULL,
"website" varchar(200) NOT NULL
);
模型安装
再次编辑 settings.py 文件, 找到 INSTALLED_APPS 设置。 INSTALLED_APPS 告诉 Django 项目哪些 app 处于激活状态。 缺省情况下如下所示:
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
)
把这四个设置前面加#临时注释起来。 (这四个app是经常使用到的,我们将在后续章节里讨论如何使用它们)。同时,注释掉MIDDLEWARE_CLASSES的默认设置条目,因为这些条目是依赖于刚才我们刚在INSTALLED_APPS注释掉的apps。 然后,添加`` ‘mysite.books’`` 到`` INSTALLED_APPS`` 的末尾,此时设置的内容看起来应该是这样的:
# 'django.middleware.common.CommonMiddleware',
# 'django.contrib.sessions.middleware.SessionMiddleware',
# 'django.contrib.auth.middleware.AuthenticationMiddleware',
)
INSTALLED_APPS = (
# 'django.contrib.auth',
# 'django.contrib.contenttypes',
# 'django.contrib.sessions',
# 'django.contrib.sites',
'mysite.books',
)
'mysite.books'指示我们正在编写的books app。 INSTALLED_APPS 中的每个app都使用 Python的路径描述,包的路径,用小数点“.”间隔。
现在我们可以创建数据库表了。 首先,用下面的命令验证模型的有效性:
validate 命令检查你的模型的语法和逻辑是否正确。 如果一切正常,你会看到 0 errors found 消息。如果出错,请检查你输入的模型代码。 错误输出会给出非常有用的错误信息来帮助你修正你的模型。
一旦你觉得你的模型可能有问题,运行 python manage.py validate 。 它可以帮助你捕获一些常见的模型定义错误。
模型确认没问题了,运行下面的命令来生成 CREATE TABLE 语句(如果你使用的 是Unix,那么可以启用语法高亮):
在这个命令行中, books 是app的名称。 和你运行 manage.py startapp 中的一样。执行之后,输出如下:
CREATE TABLE "books_publisher" (
"id" serial NOT NULL PRIMARY KEY,
"name" varchar(30) NOT NULL,
"address" varchar(50) NOT NULL,
"city" varchar(60) NOT NULL,
"state_province" varchar(30) NOT NULL,
"country" varchar(50) NOT NULL,
"website" varchar(200) NOT NULL
)
;
CREATE TABLE "books_author" (
"id" serial NOT NULL PRIMARY KEY,
"first_name" varchar(30) NOT NULL,
"last_name" varchar(40) NOT NULL,
"email" varchar(75) NOT NULL
)
;
CREATE TABLE "books_book" (
"id" serial NOT NULL PRIMARY KEY,
"title" varchar(100) NOT NULL,
"publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id") DEFERRABLE INITIALLY DEFERRED,
"publication_date" date NOT NULL
)
;
CREATE TABLE "books_book_authors" (
"id" serial NOT NULL PRIMARY KEY,
"book_id" integer NOT NULL REFERENCES "books_book" ("id") DEFERRABLE INITIALLY DEFERRED,
"author_id" integer NOT NULL REFERENCES "books_author" ("id") DEFERRABLE INITIALLY DEFERRED,
UNIQUE ("book_id", "author_id")
)
;
CREATE INDEX "books_book_publisher_id" ON "books_book" ("publisher_id");
COMMIT;
注意:
*自动生成的表名是app名称( books )和模型的小写名称 ( publisher , book , author )的组合。你可以参考附录B重写这个规则。
*我们前面已经提到,Django为每个表格自动添加加了一个 id 主键, 你可以重新设置它。
*按约定,Django添加 "_id" 后缀到外键字段名。 你猜对了,这个同样是可以自定义的。
*外键是用 REFERENCES 语句明确定义的。
*这些 CREATE TABLE 语句会根据你的数据库而作调整,这样象数据库特定的一些字段例如:(MySQL),auto_increment(PostgreSQL),serial(SQLite),都会自动生成。integer primary key 同样的,字段名称也是自动处理(例如单引号还好是双引号)。 例子中的输出是基于PostgreSQL语法的。
sqlall 命令并没有在数据库中真正创建数据表,只是把SQL语句段打印出来,这样你可以看到Django究竟会做些什么。 如果你想这么做的话,你可以把那些SQL语句复制到你的数据库客户端执行,或者通过Unix管道直接进行操作(例如,`` python manager.py sqlall books | psql mydb`` )。不过,Django提供了一种更为简易的提交SQL语句至数据库的方法: `` syncdb`` 命令
执行这个命令后,将看到类似以下的内容:
Creating table books_publisher
Creating table books_author
Creating table books_book
Installing index for books.Book model
syncdb 命令是同步你的模型到数据库的一个简单方法。 它会根据 INSTALLED_APPS 里设置的app来检查数据库, 如果表不存在,它就会创建它。 需要注意的是, syncdb 并 不能将模型的修改或删除同步到数据库;如果你修改或删除了一个模型,并想把它提交到数据库,syncdb并不会做出任何处理。 (更多内容请查看本章最后的“修改数据库的架构”一段。)
如果你再次运行 python manage.py syncdb ,什么也没发生,因为你没有添加新的模型或者 添加新的app。因此,运行python manage.py syncdb总是安全的,因为它不会重复执行SQL语句。
如果你有兴趣,花点时间用你的SQL客户端登录进数据库服务器看看刚才Django创建的数据表。 你可以手动启动命令行客户端(例如,执行PostgreSQL的`` psql`` 命令),也可以执行 `` python manage.py dbshell`` ,这个命令将依据`` DATABASE_SERVER`` 的里设置自动检测使用哪种命令行客户端。 常言说,后来者居上。
基本数据访问
>>> p1 = Publisher(name='Apress', address='2855 Telegraph Avenue',
... city='Berkeley', state_province='CA', country='U.S.A.',
... website='http://www.apress.com/')
>>> p1.save()
>>> p2 = Publisher(name="O'Reilly", address='10 Fawcett St.',
... city='Cambridge', state_province='MA', country='U.S.A.',
... website='http://www.oreilly.com/')
>>> p2.save()
>>> publisher_list = Publisher.objects.all()
>>> publisher_list
[<Publisher: Publisher object>, <Publisher: Publisher object>]
这短短几行代码干了不少的事。 这里简单的说一下:
首先,导入Publisher模型类, 通过这个类我们可以与包含 出版社 的数据表进行交互。
接着,创建一个`` Publisher`` 类的实例并设置了字段`` name, address`` 等的值。
调用该对象的 save() 方法,将对象保存到数据库中。 Django 会在后台执行一条 INSERT 语句。
最后,使用`` Publisher.objects`` 属性从数据库取出出版商的信息,这个属性可以认为是包含出版商的记录集。 这个属性有许多方法, 这里先介绍调用`` Publisher.objects.all()`` 方法获取数据库中`` Publisher`` 类的所有对象。这个操作的幕后,Django执行了一条SQL `` SELECT`` 语句。
# At this point, p1 is not saved to the database yet!
p1.save()
# Now it is.
... address='2855 Telegraph Avenue',
... city='Berkeley', state_province='CA', country='U.S.A.',
... website='http://www.apress.com/')
>>> p2 = Publisher.objects.create(name="O'Reilly",
... address='10 Fawcett St.', city='Cambridge',
... state_province='MA', country='U.S.A.',
... website='http://www.oreilly.com/')
>>> publisher_list = Publisher.objects.all()
>>> publisher_list
添加模块的字符串表现
当我们打印整个publisher列表时,我们没有得到想要的有用信息,无法把````对象区分开来:
System Message: WARNING/2 (<string>, line 872); backlink
Inline literal start-string without end-string.
System Message: WARNING/2 (<string>, line 872); backlink
Inline literal start-string without end-string.
[<Publisher: Publisher object>, <Publisher: Publisher object>]
class Publisher(models.Model):
name = models.CharField(max_length=30)
address = models.CharField(max_length=50)
city = models.CharField(max_length=60)
state_province = models.CharField(max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()
**def __unicode__(self):**
**return self.name**
class Author(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=40)
email = models.EmailField()
**def __unicode__(self):**
**return u'%s %s' % (self.first_name, self.last_name)**
class Book(models.Model):
title = models.CharField(max_length=100)
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()
**def __unicode__(self):**
**return self.title**
就象你看到的一样, __unicode__() 方法可以进行任何处理来返回对一个对象的字符串表示。 Publisher和Book对象的__unicode__()方法简单地返回各自的名称和标题,Author对象的__unicode__()方法则稍微复杂一些,它将first_name和last_name字段值以空格连接后再返回。
对__unicode__()的唯一要求就是它要返回一个unicode对象 如果`` __unicode__()`` 方法未返回一个Unicode对象,而返回比如说一个整型数字,那么Python将抛出一个`` TypeError`` 错误,并提示:”coercing to Unicode: need string or buffer, int found” 。
什么是Unicode对象呢?
你可以认为unicode对象就是一个Python字符串,它可以处理上百万不同类别的字符——从古老版本的Latin字符到非Latin字符,再到曲折的引用和艰涩的符号。
普通的python字符串是经过编码的,意思就是它们使用了某种编码方式(如 ASCII,ISO-8859-1或者UTF-8)来编码。 如果你把奇特的字符(其它任何超出标准128个如0-9和A-Z之类的ASCII字符)保存在一个普通的Python字符串里,你一定要跟踪你的字符串是 用什么编码的,否则这些奇特的字符可能会在显示或者打印的时候出现乱码。 当你尝试要将用某种编码保存的数据结合到另外一种编码的数据中,或者你想要把它显示在已经假定了某种编码的程序中的时候,问题就会发生。 我们都已经见到过网页和邮件被???弄得乱七八糟。 ?????? 或者其它出现在奇怪位置的字符:这一般来说就是存在编码问题了。
>>> publisher_list = Publisher.objects.all()
>>> publisher_list
[<Publisher: Apress>, <Publisher: O'Reilly>]
插入和更新数据
... address='2855 Telegraph Ave.',
... city='Berkeley',
... state_province='CA',
... country='U.S.A.',
... website='http://www.apress.com/')
(name, address, city, state_province, country, website)
VALUES
('Apress', '2855 Telegraph Ave.', 'Berkeley', 'CA',
'U.S.A.', 'http://www.apress.com/');
52 # this will differ based on your own data
>>> p.save()
name = 'Apress Publishing',
address = '2855 Telegraph Ave.',
city = 'Berkeley',
state_province = 'CA',
country = 'U.S.A.',
website = 'http://www.apress.com'
WHERE id = 52;
name = 'Apress Publishing'
WHERE id=52;
选择对象
[<Publisher: Apress>, <Publisher: O'Reilly>]
FROM books_publisher;
注意
注意到Django在选择所有数据时并没有使用 SELECT* ,而是显式列出了所有字段。 设计的时候就是这样: SELECT* 会更慢,而且最重要的是列出所有字段遵循了Python 界的一个信条: 明言胜于暗示。
有关Python之禅(戒律) :-),在Python提示行输入 import this 试试看。
让我们来仔细看看 Publisher.objects.all() 这行的每个部分:
首先,我们有一个已定义的模型 Publisher 。没什么好奇怪的: 你想要查找数据, 你就用模型来获得数据。
然后,是objects属性。 它被称为管理器所有的模型都自动拥有一个 objects 管理器;你可以在想要查找数据时使用它。
最后,还有 all() 方法。这个方法返回返回数据库中所有的记录。 尽管这个对象 看起来 象一个列表(list),它实际是一个 QuerySet 对象, 这个对象是数据库中一些记录的集合。 附录C将详细描述QuerySet。 现在,我们就先当它是一个仿真列表对象好了。
数据过滤
[<Publisher: Apress>]
FROM books_publisher
WHERE name = 'Apress';
[<Publisher: Apress>]
FROM books_publisher
WHERE country = 'U.S.A.'
AND state_province = 'CA';
[<Publisher: Apress>]
FROM books_publisher
WHERE name LIKE '%press%';
获取单个对象
<Publisher: Apress>
Traceback (most recent call last):
...
MultipleObjectsReturned: get() returned more than one Publisher --
it returned 2! Lookup parameters were {'country': 'U.S.A.'}
Traceback (most recent call last):
...
DoesNotExist: Publisher matching query does not exist.
p = Publisher.objects.get(name='Apress')
except Publisher.DoesNotExist:
print "Apress isn't in the database yet."
else:
print "Apress is in the database."
数据排序
在运行前面的例子中,你可能已经注意到返回的结果是无序的。 我们还没有告诉数据库 怎样对结果进行排序,所以我们返回的结果是无序的。
在你的 Django 应用中,你或许希望根据某字段的值对检索结果排序,比如说,按字母顺序。 那么,使用 order_by() 这个方法就可以搞定了。
[<Publisher: Apress>, <Publisher: O'Reilly>]
跟以前的 all() 例子差不多,SQL语句里多了指定排序的部分:
FROM books_publisher
ORDER BY name;
我们可以对任意字段进行排序:
[<Publisher: O'Reilly>, <Publisher: Apress>]
[<Publisher: Apress>, <Publisher: O'Reilly>]
如果需要以多个字段为标准进行排序(第二个字段会在第一个字段的值相同的情况下被使用到),使用多个参数就可以了,如下:
[<Publisher: Apress>, <Publisher: O'Reilly>]
我们还可以指定逆向排序,在前面加一个减号 - 前缀:
[<Publisher: O'Reilly>, <Publisher: Apress>]
尽管很灵活,但是每次都要用 order_by() 显得有点啰嗦。 大多数时间你通常只会对某些 字段进行排序。 在这种情况下,Django让你可以指定模型的缺省排序方式:
name = models.CharField(max_length=30)
address = models.CharField(max_length=50)
city = models.CharField(max_length=60)
state_province = models.CharField(max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()
def __unicode__(self):
return self.name
**class Meta:**
**ordering = ['name']**
现在,让我们来接触一个新的概念。 class Meta,内嵌于 Publisher 这个类的定义中(如果 class Publisher 是顶格的,那么 class Meta 在它之下要缩进4个空格--按 Python 的传统 )。你可以在任意一个 模型 类中使用 Meta 类,来设置一些与特定模型相关的选项。 在 附录B 中有 Meta 中所有可选项的完整参考,现在,我们关注 ordering 这个选项就够了。 如果你设置了这个选项,那么除非你检索时特意额外地使用了 order_by(),否则,当你使用 Django 的数据库 API 去检索时,Publisher对象的相关返回值默认地都会按 name 字段排序。
连锁查询
我们已经知道如何对数据进行过滤和排序。 当然,通常我们需要同时进行过滤和排序查询的操作。 因此,你可以简单地写成这种“链式”的形式:
[<Publisher: O'Reilly>, <Publisher: Apress>]
你应该没猜错,转换成SQL查询就是 WHERE 和 ORDER BY 的组合:
FROM books_publisher
WHERE country = 'U.S.A'
ORDER BY name DESC;
限制返回的数据
另一个常用的需求就是取出固定数目的记录。 想象一下你有成千上万的出版商在你的数据库里, 但是你只想显示第一个。 你可以使用标准的Python列表裁剪语句:
<Publisher: Apress>
这相当于:
FROM books_publisher
ORDER BY name
LIMIT 1;
类似的,你可以用Python的range-slicing语法来取出数据的特定子集:
这个例子返回两个对象,等同于以下的SQL语句:
FROM books_publisher
ORDER BY name
OFFSET 0 LIMIT 2;
注意,不支持Python的负索引(negative slicing):
Traceback (most recent call last):
...
AssertionError: Negative indexing is not supported.
虽然不支持负索引,但是我们可以使用其他的方法。 比如,稍微修改 order_by() 语句来实现:
更新多个对象
在“插入和更新数据”小节中,我们有提到模型的save()方法,这个方法会更新一行里的所有列。 而某些情况下,我们只需要更新行里的某几列。
例如说我们现在想要将Apress Publisher的名称由原来的”Apress”更改为”Apress Publishing”。若使用save()方法,如:
>>> p.name = 'Apress Publishing'
>>> p.save()
这等同于如下SQL语句:
FROM books_publisher
WHERE name = 'Apress';
UPDATE books_publisher SET
name = 'Apress Publishing',
address = '2855 Telegraph Ave.',
city = 'Berkeley',
state_province = 'CA',
country = 'U.S.A.',
website = 'http://www.apress.com'
WHERE id = 52;
(注意在这里我们假设Apress的ID为52)
在这个例子里我们可以看到Django的save()方法更新了不仅仅是name列的值,还有更新了 所有的列。 若name以外的列有可能会被其他的进程所改动的情况下,只更改name列显然是更加明智的。 更改某一指定的列,我们可以调用结果集(QuerySet)对象的update()方法: 示例如下:
与之等同的SQL语句变得更高效,并且不会引起竞态条件。
SET name = 'Apress Publishing'
WHERE id = 52;
update()方法对于任何结果集(QuerySet)均有效,这意味着你可以同时更新多条记录。 以下示例演示如何将所有Publisher的country字段值由’U.S.A’更改为’USA’:
2
update()方法会返回一个整型数值,表示受影响的记录条数。 在上面的例子中,这个值是2。
删除对象
删除数据库中的对象只需调用该对象的delete()方法即可:
>>> p.delete()
>>> Publisher.objects.all()
[<Publisher: Apress Publishing>]
同样我们可以在结果集上调用delete()方法同时删除多条记录。这一点与我们上一小节提到的update()方法相似:
>>> Publisher.objects.all().delete()
删除数据时要谨慎! 为了预防误删除掉某一个表内的所有数据,Django要求在删除表内所有数据时显示使用all()。 比如,下面的操作将会出错:
Traceback (most recent call last):
File "<console>", line 1, in <module>
AttributeError: 'Manager' object has no attribute 'delete'
而一旦使用all()方法,所有数据将会被删除:
如果只需要删除部分的数据,就不需要调用all()方法。再看一下之前的例子: