MyBatis源码分析(3)—— Cache接口以及实现

@(MyBatis)[Cache]

MyBatis源码分析——Cache接口以及实现

Cache接口

MyBatis中的Cache以SPI实现,给需要集成其它Cache或者自定义Cache提供了接口。

public interface Cache {	
  String getId();
  void putObject(Object key, Object value);
  Object getObject(Object key);
  Object removeObject(Object key);
  void clear();
  int getSize();
  ReadWriteLock getReadWriteLock();
}

Cache实现

Cache的实现类中,Cache有不同的功能,每个功能独立,互不影响,则对于不同的Cache功能,这里使用了装饰者模式实现。

PerpetualCache

作为为最基础的缓存类,底层实现比较简单,直接使用了HashMap。

FifoCache

FIFO回收策略,装饰类,内部维护了一个队列,来保证FIFO,一旦超出指定的大小,则从队列中获取Key并从被包装的Cache中移除该键值对。

public class FifoCache implements Cache {

  // 被包装的类
  private final Cache delegate;
  // 队列,用来维持FIFO
  private LinkedList<Object> keyList;
  // 最大可容纳的大小
  private int size;

  public FifoCache(Cache delegate) {
    this.delegate = delegate;
    this.keyList = new LinkedList<Object>();
    this.size = 1024;
  }

  @Override
  public void putObject(Object key, Object value) {
    // 将Key放入队列中,并且检查一遍,如果满了则移除队列头部的元素
    cycleKeyList(key);
    // 执行真正的操作
    delegate.putObject(key, value);
  }

  private void cycleKeyList(Object key) {
    // 将Key放入队列
    keyList.addLast(key);
    if (keyList.size() > size) {
      // 超出指定容量,移除队列头部Key
      Object oldestKey = keyList.removeFirst();
      // 从缓存中移除Key对应的值
      delegate.removeObject(oldestKey);
    }
  }
  
  // 省略部分代码
  ...
}

LoggingCache

日志功能,装饰类,用于记录缓存的命中率,如果开启了DEBUG模式,则会输出命中率日志。

public class LoggingCache implements Cache {

  private Log log;  
  private Cache delegate;
  // 请求次数
  protected int requests = 0;
  // 命中次数
  protected int hits = 0;

  public LoggingCache(Cache delegate) {
    this.delegate = delegate;
    this.log = LogFactory.getLog(getId());
  }

  @Override
  public Object getObject(Object key) {
    requests++;
    final Object value = delegate.getObject(key);
    if (value != null) {
      // 命中
      hits++;
    }
    if (log.isDebugEnabled()) {
      // 如果开启了DEBUG模式,则输出命中率
      log.debug("Cache Hit Ratio [" + getId() + "]: " + getHitRatio());
    }
    return value;
  }

  // 获取命中率
  private double getHitRatio() {
    return (double) hits / (double) requests;
  }

  // 省略部分代码
  ...
}

LruCache

LRU回收策略,装饰类,在内部保存一个LinkedHashMap,用以实现LRU。

public class LruCache implements Cache {

  private final Cache delegate;
  private Map<Object, Object> keyMap;
  private Object eldestKey;

  public LruCache(Cache delegate) {
    this.delegate = delegate;
    // 初始化设置LRU回收的边界容量
    setSize(1024);
  }

  public void setSize(final int size) {
    keyMap = new LinkedHashMap<Object, Object>(size, .75F, true) {
      private static final long serialVersionUID = 4267176411845948333L;

      // 键值移除策略,当大于指定容量时则移除最近最少使用的key/value
      protected boolean removeEldestEntry(Map.Entry<Object, Object> eldest) {
        boolean tooBig = size() > size;
        if (tooBig) {
          // 保存需要移除的键,因为在被包装的类中并不知道什么键需要移除
          eldestKey = eldest.getKey();
        }
        return tooBig;
      }
    };
  }

  @Override
  public void putObject(Object key, Object value) {
    delegate.putObject(key, value);
    // 将当前Key放到LRU的Map中,如果大于指定容量,则移除筛选的键值对
    cycleKeyList(key);
  }

  @Override
  public Object getObject(Object key) {
    // 让当前LRU的Map知道使用过
    keyMap.get(key); //touch
    return delegate.getObject(key);
  }

  @Override
  public Object removeObject(Object key) {
    // 这里没有移除当前维护的key,不过在后续也会被回收,可以忽略
    return delegate.removeObject(key);
  }

  private void cycleKeyList(Object key) {
    keyMap.put(key, key);
    if (eldestKey != null) {
      // 从Cache中移除掉LRU筛选出的键值对
      delegate.removeObject(eldestKey);
      eldestKey = null;
    }
  }
  // 省略部分代码...
}

ScheduledCache

定时清空Cache,但是并没有开始一个定时任务,而是在使用Cache的时候,才去检查时间是否到了。

public class ScheduledCache implements Cache {

  private Cache delegate;
  // 清除的时间间隔
  protected long clearInterval;
  // 上一次清除的时间
  protected long lastClear;

  public ScheduledCache(Cache delegate) {
    this.delegate = delegate;
    this.clearInterval = 60 * 60 * 1000; // 1 hour
    this.lastClear = System.currentTimeMillis();
  }

  public void setClearInterval(long clearInterval) {
    this.clearInterval = clearInterval;
  }

  @Override
  public Object getObject(Object key) {
    if (clearWhenStale()) {
      return null;
    } else {
      return delegate.getObject(key);
    }
  }

  private boolean clearWhenStale() {
    if (System.currentTimeMillis() - lastClear > clearInterval) {
      // 时间到了,清空
      clear();
      return true;
    }
    return false;
  }
  
  @Override
  public void clear() {
    // 更新清空时间
    lastClear = System.currentTimeMillis();
    delegate.clear();
  }
  // 省略部分代码
}

SynchronizedCache

同步Cache,实现比较简单,直接使用synchronized修饰方法。

public class SynchronizedCache implements Cache {

  private Cache delegate;
  
  public SynchronizedCache(Cache delegate) {
    this.delegate = delegate;
  }
  @Override
  public synchronized void putObject(Object key, Object object) {
    delegate.putObject(key, object);
  }
  // 省略部分代码
}

SoftCache

软引用回收策略,软引用只有当内存不足时才会被垃圾收集器回收。这里的实现机制中,使用了一个链表来保证一定数量的值即使内存不足也不会被回收,但是没有保存在该链表的值则有可能会被回收。
在WeakHashMap中,可以看到是将引用应用到Key的,当Key被回收后,则移除相关的Value。但是这里是将其应用到Value中,因为Key不能被回收,如果被移除的话,就会影响到整个体系,最底层的实现使用HashMap实现的,没有Key,就没有办法移除相关的值。反过来,值被回收了,将软引用对象放到队列中,可以根据Key调用removeObject移除该关联的键和软引用对象。

public class SoftCache implements Cache {
  // 用于保存一定数量强引用的值
  private final LinkedList<Object> hardLinksToAvoidGarbageCollection;
  // 引用队列,当被垃圾收集器回收时,会将软引用对象放入此队列
  private final ReferenceQueue<Object> queueOfGarbageCollectedEntries;
  private final Cache delegate;
  // 保存强引用值的数量
  private int numberOfHardLinks;

  public SoftCache(Cache delegate) {
    this.delegate = delegate;
    this.numberOfHardLinks = 256;
    this.hardLinksToAvoidGarbageCollection = new LinkedList<Object>();
    this.queueOfGarbageCollectedEntries = new ReferenceQueue<Object>();
  }

  @Override
  public void putObject(Object key, Object value) {
    // 移除被垃圾收集器回收的键值
    removeGarbageCollectedItems();
    // 将软件用作用到Value中
    delegate.putObject(key, new SoftEntry(key, value, queueOfGarbageCollectedEntries));
  }

  @Override
  public Object getObject(Object key) {
    Object result = null;
    @SuppressWarnings("unchecked")
    SoftReference<Object> softReference = (SoftReference<Object>) delegate.getObject(key);
    if (softReference != null) {
      result = softReference.get();
      if (result == null) {
        // 该值被垃圾收集器回收,移除掉该项
        delegate.removeObject(key);
      } else {
        // 这里以及下面的clear,想不通为什么要加hardLinksToAvoidGarbageCollection的同步?(在WeakCache中却没有加同步)
        synchronized (hardLinksToAvoidGarbageCollection) {
          hardLinksToAvoidGarbageCollection.addFirst(result);
          if (hardLinksToAvoidGarbageCollection.size() > numberOfHardLinks) {
            // 超出容量,则移除最先保存的引用
            hardLinksToAvoidGarbageCollection.removeLast();
          }
        }
      }
    }
    return result;
  }

  @Override
  public Object removeObject(Object key) {
    // 移除被垃圾收集器回收的键值
    removeGarbageCollectedItems();
    return delegate.removeObject(key);
  }

  @Override
  public void clear() {
    synchronized (hardLinksToAvoidGarbageCollection) {
      // 这里需要清空该队列,否则即使下面调用clear,其Map清空了,但是部分值保留有引用,垃圾收集器也不会回收,会造成短暂的内存泄漏。
      hardLinksToAvoidGarbageCollection.clear();
    }
    removeGarbageCollectedItems();
    delegate.clear();
  }

  private void removeGarbageCollectedItems() {
    SoftEntry sv;
    // 清空被垃圾收集器回收的value其相关联的键以及软引用
    while ((sv = (SoftEntry) queueOfGarbageCollectedEntries.poll()) != null) {
      delegate.removeObject(sv.key);
    }
  }

  // 这里软引用对象是用在value中的
  private static class SoftEntry extends SoftReference<Object> {
    // 保存与value相关联的Key,因为一旦被垃圾收集器回收,则此软引用对象会被放到关联的引用队列中,这样就可以根据Key,移除该键值对。
    private final Object key;

    private SoftEntry(Object key, Object value, ReferenceQueue<Object> garbageCollectionQueue) {
      super(value, garbageCollectionQueue);
      this.key = key;
    }
  }
  // 省略部分代码
}

WeakCache

弱引用回收策略,弱引用的对象一旦被垃圾收集器发现,则会被回收,无论内存是否足够。这里的实现和上面的软引用类似,除了使用WeakReference替换掉SoftReference,其它基本一样。还有一点想不通的就是,为什么SoftCache加锁了,而这里没有加锁。

  public Object getObject(Object key) {
    Object result = null;
    @SuppressWarnings("unchecked") // assumed delegate cache is totally managed by this cache
    WeakReference<Object> weakReference = (WeakReference<Object>) delegate.getObject(key);
    if (weakReference != null) {
      result = weakReference.get();
      if (result == null) {
        delegate.removeObject(key);
      } else {
        // 软引用这里加锁了
        hardLinksToAvoidGarbageCollection.addFirst(result);
        if (hardLinksToAvoidGarbageCollection.size() > numberOfHardLinks) {
          hardLinksToAvoidGarbageCollection.removeLast();
        }
      }
    }
    return result;
  }

TransactionalCache

事务缓存,在提交的时候,才真正的放到Cache中,或者回滚的时候清除掉,对Cache没有影响。

public class TransactionalCache implements Cache {

  private Cache delegate;
  private boolean clearOnCommit;
  private Map<Object, AddEntry> entriesToAddOnCommit;
  private Map<Object, RemoveEntry> entriesToRemoveOnCommit;

  public TransactionalCache(Cache delegate) {
    this.delegate = delegate;
    this.clearOnCommit = false;
    this.entriesToAddOnCommit = new HashMap<Object, AddEntry>();
    this.entriesToRemoveOnCommit = new HashMap<Object, RemoveEntry>();
  }

  @Override
  public Object getObject(Object key) {
    if (clearOnCommit) return null; // issue #146
    return delegate.getObject(key);
  }

  @Override
  public void putObject(Object key, Object object) {
    // 移除当前事务中 待移除键值对操作
    entriesToRemoveOnCommit.remove(key);
    // 添加当前事务中 待增加到缓存键值对操作
    entriesToAddOnCommit.put(key, new AddEntry(delegate, key, object));
  }

  @Override
  public Object removeObject(Object key) {
    // 移除增加该键值对的操作
    entriesToAddOnCommit.remove(key);
    // 添加移除键值对操作
    entriesToRemoveOnCommit.put(key, new RemoveEntry(delegate, key));
    return delegate.getObject(key);
  }

  @Override
  public void clear() {
    reset();
    clearOnCommit = true;
  }

  public void commit() {
    if (clearOnCommit) {
      // 当提交事务时需要先清空,则清空缓存
      delegate.clear();
    } else {
      // 应用移除键值对操作
      for (RemoveEntry entry : entriesToRemoveOnCommit.values()) {
        entry.commit();
      }
    }
    // 应用添加键值对操作
    for (AddEntry entry : entriesToAddOnCommit.values()) {
      entry.commit();
    }
    reset();
  }

  public void rollback() {
    reset();
  }

  private void reset() {
    clearOnCommit = false;
    entriesToRemoveOnCommit.clear();
    entriesToAddOnCommit.clear();
  }

  private static class AddEntry {
    private Cache cache;
    private Object key;
    private Object value;

    public AddEntry(Cache cache, Object key, Object value) {
      this.cache = cache;
      this.key = key;
      this.value = value;
    }

    public void commit() {
      // 提交的时候,才真正放入缓存
      cache.putObject(key, value);
    }
  }

  private static class RemoveEntry {
    private Cache cache;
    private Object key;

    public RemoveEntry(Cache cache, Object key) {
      this.cache = cache;
      this.key = key;
    }

    public void commit() {
      // 提交的时候才真正从缓存中移除
      cache.removeObject(key);
    }
  }
}

SerializedCache

序列化功能,将值序列化后存到缓存中。该功能用于缓存返回一份实例的Copy,用于保存线程安全。

public class SerializedCache implements Cache {
  // 省略部分代码	

  @Override
  public void putObject(Object key, Object object) {
    if (object == null || object instanceof Serializable) {
      // 先序列化后再存放到缓存中
      delegate.putObject(key, serialize((Serializable) object));
    } else {
      throw new CacheException("SharedCache failed to make a copy of a non-serializable object: " + object);
    }
  }

  @Override
  public Object getObject(Object key) {
    Object object = delegate.getObject(key);
    // 不为空,则反序列化,生成一份Copy
    return object == null ? null : deserialize((byte[]) object);
  }

  private byte[] serialize(Serializable value) {
    try {
      // 序列化
      ByteArrayOutputStream bos = new ByteArrayOutputStream();
      ObjectOutputStream oos = new ObjectOutputStream(bos);
      oos.writeObject(value);
      oos.flush();
      oos.close();
      return bos.toByteArray();
    } catch (Exception e) {
      throw new CacheException("Error serializing object.  Cause: " + e, e);
    }
  }

  private Serializable deserialize(byte[] value) {
    Serializable result;
    try {
      // 反序列化
      ByteArrayInputStream bis = new ByteArrayInputStream(value);
      ObjectInputStream ois = new CustomObjectInputStream(bis);
      result = (Serializable) ois.readObject();
      ois.close();
    } catch (Exception e) {
      throw new CacheException("Error deserializing object.  Cause: " + e, e);
    }
    return result;
  }

  public static class CustomObjectInputStream extends ObjectInputStream {

    public CustomObjectInputStream(InputStream in) throws IOException {
      super(in);
    }

    @Override
    protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException, ClassNotFoundException {
      // 此方法只有在待序列化的类第一次序列化的时候才会被调用
      // 遍历所支持的ClassLoader,加载对应的Class
      return Resources.classForName(desc.getName());
    }
  }
}
posted @ 2016-07-25 22:47  Jabnih  阅读(3854)  评论(0编辑  收藏  举报