矩阵乘法的顺序安排问题 Python简单实现

矩阵乘法的顺序安排问题

问题背景

设矩阵 AB 大小分别 \(p\times q\) , \(q \times r\) ,则矩阵乘积 AB 需要做的标量乘法次数为 \(p\times q \times r\) 。我们知道矩阵的乘法运算是不可交换的,但它是可结合的。因此对于多个矩阵的连乘,我们可以以任意顺序添加括号改变其中相邻矩阵乘法的优先级。不同计算顺序下总的标量乘法运算次数是不同的,我们的目标是找到一个最优的矩阵乘法计算顺序。

给定矩阵乘法序列 \(A_1, A_2, ..., A_n\),将乘法序列以第 \(i\) 个矩阵分为前后两部分,则方案数为前后两部分方案数之积。因此乘法计算的顺序个数为

\[T(n) = \Sigma_{i=1}^{n-1} T(i) \cdot T(n-i) \]

T(n) 的解为 Catalan数,这里不加证明给出结果为

\[T(n) = \text{C}_{2n}^n - \text{C}_{2n}^{n+1} = \frac {\text{C}_{2n}^n} {n+1} \]

由此可见的矩阵乘法顺序个数为问题规模 \(n\) 的指数级,显然通过枚举找到最优的乘法顺序是不合适的。

 

暴力算法

首先还是试探一下如何用最朴素的方式解决。

\(M_{i, j}\) 表示 第 \(i\) 个矩阵到第 \(j\) 个矩阵的最少乘法运算次数,用数学化的语言表达我们的目标,即

\[M_{1, n} = \min_i \{ M_{1, i} + M_{i+1, n} + p \times q \times r \} \]

其中 p、q、r为最后两个矩阵的大小。

代码很容易实现:

def minMatrixMultiplication(Mats):
	"""
	:param Mats: Mat类型的list
	:return:	 矩阵乘法的最小乘法次数,及对应的括号位置
	"""
    
	
	if len(Mats)==1:
		return 0, '[%d,%d]' % (Mats[0].n, Mats[0].m)

	import math
	minCost = math.inf
	bestSeq = ''        # 记录添加的括号位置
	for i in range(0, len(Mats)-1):
		leftCost, leftSeq = minMatrixMultiplication(Mats[:i+1])
		rightCost, rightSeq = minMatrixMultiplication(Mats[i+1:])
		tmpCost = leftCost + rightCost +  Mats[0].n * Mats[i].m * Mats[-1].m

		if tmpCost < minCost:
			minCost = tmpCost
			bestSeq = '(' + leftSeq + '*' + rightSeq + ')'

	return minCost, bestSeq

测试用的矩阵类型Mat定义如下:

class Mat:
	def __init__(self, mat=None):
		if mat and isinstance(mat[0], list):
			self.mat = mat
			self.n = len(mat)
			self.m = len(mat[0])
		else:
			self.mat = [[]]
			self.n = 0
			self.m = 0

	def __init__(self, n, m):
		self.mat = [[]]
		self.n = n
		self.m = m

以上算法的函数调用次数 \(f(n) = 1 + f(1)+f(n-1) + f(2)+f(n-2) + ... + f(n-1)+f(1)\)

容易验证得到\(f(n) = 3^n\), 即该算法的复杂度为 O(\(3^n\)),这是不可接受的。

 

记忆化

分析一番可以发现,对于矩阵序列 i~j 之间乘法的最优结果 \(M_{i, j}\) 只有 \(\text{C}_n^2\) 种,那么上述代码的中间很多段都进行了重复计算。如果把中间得到的答案记录下来,可以大大减少计算量。

在不改变上述算法的框架下,将 i~j 之间的结果 \(M_{i, j}\) 定义Python嵌套的内部函数。新增了变量 invokeCnt 统计递归函数需要重新计算 \(M_{i, j}\) 的次数。

def minMatrixMultiplication2(Mats):
	siz = len(Mats) + 1
	# 血的教训:不要使用下面的方法定义二维数组
	# minCostMem = [[-1]*siz]*siz
	# bestSeqMem = [['']*siz]*siz
	minCostMem = [[-1]*siz for i in range(siz)]
	bestSeqMem = [['']*siz for i in range(siz)]

	invokeCnt = 0  # 统计递归函数重新执行次数
	def helper(s, t):
		if s==t:
			return 0, '[%d,%d]' % (Mats[s].n, Mats[s].m)

		if minCostMem[s][t]!=-1:
			return minCostMem[s][t], bestSeqMem[s][t]

		nonlocal invokeCnt
		invokeCnt += 1

		import math
		minCost = math.inf
		bestSeq = ''
		for i in range(s, t):
			leftCost, leftSeq = helper(s, i)
			rightCost, rightSeq = helper(i+1, t)
			tmpCost = leftCost + rightCost +  Mats[s].n * Mats[i].m * Mats[t].m
			if tmpCost < minCost:
				minCost = tmpCost
				bestSeq = '(' + leftSeq + '*' + rightSeq + ')'

		minCostMem[s][t] = minCost
		bestSeqMem[s][t] = bestSeq

		return minCost, bestSeq

	return helper(0, len(Mats)-1), invokeCnt

 

动态规划

(待补充。。。)

 

运行对比

Mats = [Mat(2,3), Mat(3,5), Mat(5,8), Mat(8,2), Mat(2,3), Mat(3,2), Mat(2,5), Mat(5, 3)]
print(minMatrixMultiplication(Mats))
# (184, '((([2,3]*([3,5]*([5,8]*[8,2])))*([2,3]*[3,2]))*([2,5]*[5,3]))')
# 调用次数 3^8 = 2187
print(minMatrixMultiplication2(Mats))
# ((184, '((([2,3]*([3,5]*([5,8]*[8,2])))*([2,3]*[3,2]))*([2,5]*[5,3]))'), 28)

 

注意事项

Python 定义二维矩阵,千万不要使用注释写法。调试了很久才发现问题。 T^T
正确的写法为

  • matrix = [[0]*m for i in range(n)]
  • 或使用numpy库
    import numpy
    matrix = numpy.zeros((n, m))

原因可以简单理解为

n = 5
m = 3
matrix = [[0]*m]*n

# 相当于
"""
array = [0 0 0]
matrix = [array]*5
# matrix内的5个元素都是同一个列表引用
# 当使用 matrix[3][2] = 1 赋值
# 则 array[2] = 1
# 所以 matrix[0~4][2]都为 1
"""
posted @ 2020-03-22 23:58  izcat  阅读(1818)  评论(0编辑  收藏  举报