2018CCPC吉林赛区 | 部分题解 (HDU6555 HDU6556 HDU6559 HDU6561)

 // 杭电上的重现赛:http://acm.hdu.edu.cn/contests/contest_show.php?cid=867

 // 杭电6555~6566可交题

A - The Fool 

题目大意:

求∑(1,n) [n/i] 的奇偶性。

分析及代码:

这个求和可以分块计算,复杂度O(√N),完全可行。

我觉得是水题就打表找规律了,发现前3项1~3结果是奇数,接着5项4~8结果是偶数,再接着7项是奇数,再然后9项时偶数......如此交替。

那么只需要计算n在哪一段就能确定奇偶性了,时间复杂度O(1)。

 

AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;

int main() {
    int t = 0, T; cin>>T;
    while(t<T) {
        int n;
        scanf("%d", &n);
        int k = sqrt(n+1);
        if(k*k<n+1) ++k;


        printf("Case %d: ", ++t);
        if(k&1) printf("even\n");
        else printf("odd\n");
    }

    return 0;
}
View Code

 

 

B - The World

题目大意:

 世界时间换算问题,本题只考虑4个城市,每次给两个城市和其中一个城市的时间,求另一城市的时间。

分析及代码:

听说队友A不掉,然后又看不懂样例了,遂尝试解题。

本题还是有点坑的,如果给定的时间都是标准24小时制,那就非常简单了,加加减减就完事了。

看了百度百科才明白什么是真正的12小时制

十二小时制是一个时间规则把一日二十四小时分为两个时段,分别为上午(拉丁文ante meridiem表示中午之前)和 下午(拉丁文post meridiem表示中午之后)。每个时段由十二个小时构成,以数字12、1、2、3、4、5、6、7、8、9、10、11依次序表示。

所以12小时制里是不存在 0:30 AM 和 0:30 PM 的!!!

 

注意24小时制与12小时的转化后,就没什么问题了O.O

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<map>
using namespace std;
map<string, int> mp;
int main() {

    mp["Beijing"] =  8;
    mp["Washington"] = -5;
    mp["London"] = 0;
    mp["Moscow"] = 3; 

    string city1, city2;
    int h, min;
    string ap;
    int t = 0, T; cin>>T;
    while(t<T) {
        scanf("%d:%d", &h, &min);
        cin>>ap;
        cin>>city1;
        cin>>city2;

        if(ap=="PM" && h!=12) h += 12;   // 转化成24小时制
        if(ap=="AM" && h==12) h = 0;

        h += mp[city2] - mp[city1];
        printf("Case %d: ", ++t);

        if(h>=24) {
            printf("Tomorrow ");
            h -= 24;
        }else if(h<0) {
            printf("Yesterday ");
            h += 24;
        } else {
            printf("Today ");
        }

        if(h>=12) printf("%d:%02d PM\n", h==12?12:h-12, min);
        else 
            printf("%d:%02d AM\n", h==0?12:h, min);
        
        
    }

    return 0;
}
View Code

 

E - The Tower

题目大意:

 计算几何题。给你一个高h,底面半径r的圆锥体,以及一个点(x0, y0, z0)和速度(vx, vy, vz),求什么时候落到圆锥面上。

分析及代码:

一看很简单啊,求直线方程与圆锥面的交点就完事了。

整了半天把圆锥面的方程写出来了(开始写错WA了一发):

  (z - h)^2 = h^2/r^2 * (x^2+y^2)

直线方程

  (x-x0)/vx = (y-y0)/vy = (z-z0)/vz

联立消去x, y

解一元二次方程求出z

注意z的范围0<=z<=h,筛选过后选距离z0近的一点,fabs((z-z0)/vz)就是答案。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define sqr(x) ((x)*(x))

int main() {
    double r, h;
    double x0, y0, z0, vx, vy, vz;
    int t = 0, T; cin>>T;
    while(t<T) {

        scanf("%lf %lf", &r, &h);
        scanf("%lf %lf %lf", &x0, &y0, &z0);
        scanf("%lf %lf %lf", &vx, &vy, &vz);
        printf("Case %d: ", ++t);

        if(fabs(vz)<1e-8) { // 一定要特殊处理,后面的计算vz作了分母
            if(fabs(vy)<1e-8) {
                double xx = sqr((z0-h)*(r/h)) - y0*y0;
                xx = sqrt(xx);
                printf("%.10lf\n", min(fabs(xx-x0), fabs(-xx-x0))/fabs(vx));
            } else {
                double a = 1 + sqr(vx/vy);
                double b =2*vx/vy*(x0-vx/vy*y0);
                double c = sqr(x0-vx/vy*y0) - sqr(r/h)*sqr(z0-h);

                double y1 = (-b+sqrt(b*b-4*a*c))/2/a;
                double y2 = (-b-sqrt(b*b-4*a*c))/2/a;
                printf("%.10lf\n",  min(fabs(y1-y0), fabs(y2-y0))/fabs(vy));
            }
            continue;
        }
        double a = (vx*vx+vy*vy)/(vz*vz) - r*r/(h*h);
        double b = 2*(vx/vz*(x0-vx/vz*z0)+vy/vz*(y0-vy/vz*z0)) + 2*r*r/h;
        double c = sqr(x0-vx/vz*z0) + sqr(y0-vy/vz*z0) - r*r;
    //    printf("%lf %lf %lf\n", a, b, c);
        
        if(fabs(a)<1e-8) { // 实际没用,可以删掉
            printf("%.10lf\n", fabs((-c/b-z0)/vz));
            continue;
        }
        double z1 = (-b+sqrt(b*b-4*a*c))/2/a;
        double z2 = (-b-sqrt(b*b-4*a*c))/2/a;

    //    double zz = fabs(z1-z0)<fabs(z2-z0)?z1:z2;
    //    double xx = x0 + vx/vz*(zz-z0);
    //    double yy = y0 + vy/vz*(zz-z0);
        double zz;
        if(z1>h) zz = z2;
        else if(z2>h) zz = z1;
        else zz = fabs(z1-z0)<fabs(z2-z0)?z1:z2;
        
        printf("%.10lf\n", fabs((zz-z0)/vz));

    }
    
    return 0;
}
View Code

 

PS: 看到题解令(x-x0)/vx = (y-y0)/vy = (z-z0)/vz = t, 用t分别表示x, y, z再带入圆锥方程,直接解出t,貌似可以不用特殊处理(vz=0的情况)。

 

 

G - High Priestess

题目大意:

 给你数量10^4个阻值为1欧的电阻,求通过串并联得到一个阻值为r的等效电阻的方案,精度至少为1e-8。

分析及代码:

将阻值r转化为连分数的形式,然后根据串并联公式将分式里的+合理转化成相应形式。

具体来说,连分数的数位ki有奇数个的时候:

  1. 最后一个数字先并联(如1/3就是三个1欧并联);
  2. 将接下来的数字串联,并且接着与前一个电路串联
  3. 再将接下来的数字并联,并且接着与前一个电路并联
  4. 交替进行2-3两步,直到数位枚举完毕。

连分数的数位为偶数时,跟上面过程相似,不同的是第一步为串联,以后步骤的串联与并联交换即可。

例如组成 r = 0.33 = 1/(3 + 1/33)

  1. 33个1欧电阻串联得到33欧
  2. 3个1欧并联得到1/3欧,1/3与33并联得到 33/100,即0.33。
  3. 两个数字枚举完,结束。

 

代码WA了,还在debug...

 


 

 

(未完待续。。。)

 

posted @ 2019-07-17 23:59  izcat  阅读(1045)  评论(0编辑  收藏  举报