高数笔记 P03:一元函数积分学

1 不定积分与定积分

定义

  • 不定积分:\(\displaystyle \int f(x)dx = F(x) + C\)

    连续函数必有原函数;含有第一类间断点、无穷间断点的函数在包含该间断点的区间内必没有原函数。

  • 定积分:\(\displaystyle \int_a^b f(x)dx = \lim_{\lambda \to 0} \sum_{i = 1}^n f(\xi_i)\Delta x_i\)

    \(f(x)\)\([a,b]\)上连续,则\(\displaystyle \int_a^b f(x)dx\)存在。设\(f(x)\)\([a,b]\)上有界,且只有有限个间断点,则\(\displaystyle \int_a^b f(x)dx\)存在。

  • 变限积分:\(\displaystyle \int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt\),其中\((\displaystyle \int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt)' = f(\varphi_2(x)) \cdot \varphi_2(x) - f(\varphi_1(x)) \cdot \varphi_1(x)\)

  • 反常积分:\(\displaystyle \int_{-\infty}^{+\infty} f(x)dx = \displaystyle \int_{-\infty}^C f(x)dx + \displaystyle \int_C^{+\infty} f(x)dx\).(这里必须这样计算,否则前面是不存在的。)

  • 瑕点:无界间断点。瑕积分:无界函数的反常积分。

性质

  • 牛顿-莱布尼茨公式:\(\displaystyle \int_a^b f(x)dx = F(b) - F(a)\)
  • 保号性:在区间\([a,b]\)\(f(x) \le g(x)\),则有\(\displaystyle \int_a^b f(x) dx \le \int_a^b g(x) dx\)
  • 估值定理:设\(m,M\)\(f(x)\)在区间\([a, b]\)上的最小值和最大值,则\(m(b-a) \le \displaystyle \int_a^b f(x) dx \le M(b-a)\)
  • 中值定理:设\(f(x)\)在区间\([a, b]\)上连续,则\(\exists \xi \in [a,b]\),使得\(\displaystyle \int_a^b f(x) dx = f(\xi)(b-a)\)

不定积分计算--a.凑微分法

  1. 基本积分公式

    • \(\displaystyle \int x^kdx = \cfrac 1{k+1} x^k + C, k \neq -1\)
    • \(\displaystyle \int \cfrac 1xdx = \ln |x| + C\)
    • \(\displaystyle \int a^xdx = a^x \cfrac 1{\ln a} + C, a \gt 0 \ and \ a \neq 1\)
    • \(\displaystyle \int e^x = e^x + C\)
    • \(\displaystyle \int \sin xdx= -\cos x + C\)
    • \(\displaystyle \int \cos xdx = \sin x + C\)
    • \(\displaystyle \int \tan xdx = -\ln |\cos x| + C\)
    • \(\displaystyle \int \cot xdx = \ln |\sin x| + C\)
    • \(\displaystyle \int \sec xdx = \ln |\sec x + \tan x| + C\)
    • \(\displaystyle \int \csc xdx = \ln |\csc x - \cot x| + C\)
    • \(\displaystyle \int \sec^2 xdx = \tan x + C\)
    • \(\displaystyle \int \csc^2 xdx = -\cot x + C\)
    • \(\displaystyle \int \sec x \tan xdx = \sec x + C\)
    • \(\displaystyle \int \csc x \cot xdx = -\csc x + C\)
    • \(\displaystyle \int \cfrac 1{\sqrt{1 - x^2}}dx = \arcsin x + C\)
    • \(\displaystyle \int \cfrac 1{1 + x^2}dx = \arctan x + C\)
    • \(\displaystyle \int \cfrac 1{\sqrt{a^2 - x^2}}dx = \arcsin \cfrac xa + C\)
    • \(\displaystyle \int \cfrac 1{\sqrt{a^2 + x^2}}dx = \ln (x + \sqrt{a^2 + x^2}) +_ C\)
    • \(\displaystyle \int \cfrac 1{\sqrt{x^2 - a^2}}dx = \ln (x + \sqrt{x^2 - a^2}) + C\)
    • \(\displaystyle \int \cfrac 1{a^2 + x^2}dx = \cfrac 1a \arctan \cfrac xa + C\)
    • \(\displaystyle \int \cfrac 1{a^2 - x^2}dx = \cfrac 1{2a} \ln |\cfrac{a+x}{a-x}| + C\)
    • \(\displaystyle \int \cfrac 1{x^2 - a^2}dx = \cfrac 1{2a} \ln |\cfrac {x-a}{x+a}| + C\)
  2. 常用凑微分公式

    • \(\cfrac {du}{2\sqrt u} = d(\sqrt{u}), \ \cfrac {du}{u^2} = d(-\cfrac 1u)\)
    • \(\cfrac {du}{\sqrt{1-u^2}} = d(\arcsin u), \ \cfrac {du}{1+u^2} = d(\arctan u)\)
    • \(\cfrac {u'(x)}{\sqrt{u(x)}}dx = d(2\sqrt{u(x)}), \ \cfrac {u'(x)}{u(x)}dx = d(\ln|u(x)|)\)
    • \(\cfrac {du}{1 + \cos u} = d(\tan \cfrac u2), \ \cfrac {du}{1 - \cos u} = d(-\cot \cfrac u2)\)
    • \(\cos 2udu = d(\sin u \cos u)\)

不定积分计算--b.换元法

  1. 三角代换:当被积函数有\(\sqrt{a^2 \pm x^2}, \ \sqrt{x^2 - a^2}\)

    \[\begin{array}{l|l} \sqrt{a^2 - x^2} & x = a \sin t(-\frac \pi 2 \lt t \lt \frac \pi 2) \\ \sqrt{a^2 + x^2} & x = a \tan t(-\frac \pi 2 \lt t \lt \frac \pi 2) \\ \sqrt{x^2 + a^2} & x = a \sec t(x \gt 0, 0 \le t \lt \frac \pi 2; x \lt 0, \frac \pi 2 \lt t \le \pi) \end{array} \]

  2. 倒代换:\(x = \cfrac 1t\)

    \[\begin{array}{l} \displaystyle \int \cfrac {dx}{x^k \sqrt{a^2 - x^2}},(k = 1, 2, 4 ,\cdots) \\ \displaystyle \int \cfrac {dx}{x^k \sqrt{a^2 + x^2}},(k = 1, 2, 4 ,\cdots) \\ \displaystyle \int \cfrac {dx}{x^k \sqrt{x^2 - a^2}},(k = 1, 2, 4 ,\cdots) \end{array} \]

  3. 整体复杂代换

    • \(\sqrt[n]{ax+b}, \ \sqrt{\cfrac {ax+b}{cx+d}}, \ \sqrt{ae^{bx}+c}\)
    • \(a^x, \ e^x\)
    • \(\ln x\)
    • \(\arcsin x, \ \arctan x\)

不定积分计算--c.分部积分法

  • \(P_n(x) \cdot e^{ax}, \ P_n(x) \cdot \sin bx, \ P_n(x) \cdot \cos bx\)

  • \(e^{ax} \cdot \sin bx, \ e^{ax} \cdot \cos bx\)

  • \(P_n(x) \cdot \ln x, \ P_n(x) \cdot \arcsin x, \ P_n(x) \cdot \arctan x\)

    \[\begin{array}{c|c|c|c|c|c|c} u & u' & u'' & u''' & \cdots & 0 \ or \ u^{(n+1)} & nothing \ here \\ \hline v^{(n+1)} & v^{(n)} & v^{(n-1)} & v^{(n-2)} & \cdots & v^{(t)} & (-1)^{n+1} \int u^{(n+1)}dx \\ \end{array} \]

    上面三种情况左侧的部分为\(u\),右侧的部分为\(v^{(n+1)}\);积分结果为上表格中的左上至右下,交叉相乘,正负相间,即$u \cdot v^{(n)} - u' \cdot v^{(n - 1)} + u'' \cdot v^{(n - 2)} - \cdots $

不定积分计算--d.有理函数积分法

对于\(\displaystyle \int \cfrac {P_n(x)}{Q_m(x)}dx, (n \lt m)\),将\(Q_m(x)\)因式分解:

  1. \(Q_m(x)\)的一次因式\((ax + b)\),产生一项\(\cfrac A{ax + b}\)
  2. \(Q_m(x)\)\(k\)重一次因式\((ax + b)^k\),产生\(k\)\(\cfrac {A_1}{ax + b} + \cfrac {A_2}{(ax + b)^2} + \cdots + \cfrac {A_k}{(ax + b)^k}\)
  3. \(Q_m(x)\)的二次因式\((px^2 + qx + r)\),产生一项\(\cfrac {Ax + B}{px^2 + qx + r}\)
  4. \(Q_m(x)\)\(k\)重二次因式\((px^2 + qx + r)^k\),产生\(k\)\(\cfrac {A_1 x + B_1}{px^2 + qx + r} + \cfrac {A_2 x + B_2}{(px^2 + qx + r)^2} + \dots + \cfrac {A_k x + B_k}{(px^2 + qx + r)^k}\)

定积分计算

  • 利用不定积分和牛顿-莱布尼茨公式。
  • 换元法,变上下限。
  • \[\displaystyle \int_0^{\frac {\pi}2} \sin^n xdx = \int_0^{\frac {\pi}2} \cos^n xdx = \begin{cases} \cfrac {n-1}n \cdot \cfrac {n-3}{n-2} \cdot \cfrac {n-5}{n-4} \cdot \cdots \cdot \cfrac 12 \cdot \cfrac \pi 2 & n \ is \ even \\ \cfrac {n-1}n \cdot \cfrac {n-3}{n-2} \cdot \cfrac {n-5}{n-4} \cdot \cdots \cdot \cfrac 23 & n \ is \ odd\end{cases}$$。 \]

  • 根据正态分布概率密度,$$\displaystyle \int_{-\infty}^{+\infty} e{-x2} dx = 2\int_0^{+\infty} e{-x2} dx = \sqrt \pi$$

几何应用

  • 平面图形面积
  • 平面曲线弧长
    • 参数方程下:\(\displaystyle s = \int_\alpha^\beta \sqrt{x'^2(t) + y'^2(t)} dt\)
    • 直角坐标系:\(\displaystyle s = \int_a^b \sqrt{1 + y'^2(x)} dx\)
    • 极坐标系:\(\displaystyle s = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} d\theta\)
  • 计算旋转体的体积

反常积分审敛法

  • 反常积分收敛:设函数\(f(x)\)在区间\([a, +\infty)\)上连续,且\(f(x) \ge 0\)。若函数\(\displaystyle F(x) = \int_a^x f(t)dt\)\([a, +\infty)\)上有上界,则反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)收敛。
  • 比较审敛法 1:设函数\(f(x)\)在区间\([a, +\infty)(a \gt 0)\)上连续,且\(f(x) \ge 0\)。如果存在常数\(M \gt 0 \ and \ p \gt 1\),使得\(f(x) \le \cfrac M{x^p}(a \le x \lt +\infty)\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)收敛;如果存在常数\(N \gt 0\),使得\(f(x) \ge \cfrac Nx(a \le x \lt +\infty)\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)发散。
  • 极限审敛法 1:设函数\(f(x)\)在区间\([a, +\infty)\)上连续,且\(f(x) \ge 0\)。如果存在常数\(\ p \gt 1\),使得\(\displaystyle \lim_{x \to +\infty} x^p f(x) = c \lt + \infty\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)收敛;如果\(\displaystyle \lim_{x \to +\infty} xf(x) = d \gt 0 \ or \ = +\infty\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)发散。
  • 比较审敛法 2:设函数\(f(x)\)在区间\((a, b]\)上连续,且\(f(x) \ge 0\)\(x = a\)\(f(x)\)的瑕点。如果存在常数\(M \gt 0 \ and \ q \lt 1\),使得\(f(x) \le \cfrac M{(x - a)^q}(a \lt x \le b)\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)收敛;如果存在常数\(N \gt 0\),使得\(f(x) \ge \cfrac N{x - a}(a \lt x \le b)\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)发散。
  • 极限审敛法 2:设函数\(f(x)\)在区间\((a, b]\)上连续,且\(f(x) \ge 0\)\(x = a\)\(f(x)\)的瑕点。如果存在常数\(0 \lt q \lt 1\),使得\(\displaystyle \lim_{x \to a^+} (x - a)^q f(x)\)存在,那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)收敛;如果\(\displaystyle \lim_{x \to a^+} (x - a)f(x) = d \gt 0 \ or \ = +\infty\),那么反常积分\(\displaystyle \int_a^{+\infty} f(x) dx\)发散。

\(\Gamma\)函数

\[\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} dx \quad (s \gt 0) \]

  • \(s = 1\)为函数\(e^{-x} x^{s-1}\)的瑕点。反常积分\(\displaystyle \int_0^{+\infty} e^{-x} x^{s-1} dx \quad (s \gt 0)\)收敛。
  • 递推公式:\(\Gamma(s + 1) = s\Gamma(s)\)\(\Gamma(n + 1) = n!\)
  • \(s \to 0^+\)时,\(\Gamma(s) \to +\infty\)
  • 余元公式:\(\Gamma(s) \Gamma(1 - s) = \cfrac {\pi}{\sin \pi s}\)
  • \(x = u^2, \ s = \frac 12\)得,\(\displaystyle 2 \int_0^{+\infty} e^{-u^2} du = \Gamma(\frac 12) = \sqrt{\pi}\),即概率论中常用公式\(\displaystyle \int_0^{+\infty} e^{-u^2} du = \cfrac {\sqrt{\pi}}2\)
posted @ 2020-07-27 09:47  ixtwuko  阅读(2870)  评论(0编辑  收藏  举报