【BZOJ】2876: [Noi2012]骑行川藏

题意

给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \sum_{i=1}^{n} \frac{s_i}{v_i} $

分析

首先是贪心,很显然小于等于号要取等号,即问题转化为,满足\(g(V) = \sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 = E\),最小化$ f(V) = \sum_{i=1}^{n} \frac{s_i}{v_i}$。于是拉格朗日乘数大法好。

题解

拉格朗日乘数:
满足\(g(X) = c\),最大(小)化\(f(X)\),其中\(X\)是向量。
大概就是令\(F(X, \lambda) = f(X) + \lambda (g(X) - c)\),得到\(|X|+1\)个偏导为0的方程,答案就是所有解的其中一个。
对于本题:

$$ \begin{align} F(V, \lambda) & = f(V) + \lambda (g(V) - E) \\ & = \sum_{i=1}^{n} \left( \frac{s_i}{v_i} + \lambda k_i s_i ( v_i - v_i' )^2 \right) - \lambda E \\ & = \sum_{i=1}^{n} \left( \frac{s_i}{v_i} + \lambda k_i s_i v_i^2 + \lambda k_i s_i {v'}_i^2 - 2\lambda k_i s_i v'_i v_i \right) - \lambda E \\ \end{align} $$

解出偏导方程,得到:

$$ 2 \lambda k_i v_i^2 (v_i - v'_i) - 1 = 0 $$

由于\(v_i > v_i'\),所以对于答案的解来说,\(\lambda>0\)。而且还可以发现\(v_i\)关于\(\lambda\)单调,然后得到\((v_i - v ' _ i)\)关于\(\lambda\)单调。所以\(g(V)\)关于\(\lambda\)单调,于是我们可以二分一下\(\lambda\)。得到了\(\lambda\),求\(v_i\)也可以二分,或者牛顿迭代。

反思

1、数学太弱。

#include <bits/stdc++.h>
using namespace std;
typedef double lf;
const lf oo=1e9, eps=1e-12;
const int N=10005;
lf s[N], k[N], vv[N], v[N];
int n;
inline lf sqr(lf a) {
	return a*a;
}
lf got(lf lambda) {
	lf e=0;
	for(int i=1; i<=n; ++i) {
		lf l=0, r=oo, go=1/(lambda*k[i]*2);
		while(r-l>=eps) {
			lf mid=(l+r)/2;
			if(sqr(mid)*(mid-vv[i])<=go) {
				l=mid;
			}
			else {
				r=mid;
			}
		}
		v[i]=(l+r)/2;
		e+=k[i]*s[i]*sqr(v[i]-vv[i]);
	}
	return e;
}
int main() {
	lf E, l=0, r=oo;
	scanf("%d%lf", &n, &E);
	for(int i=1; i<=n; ++i) {
		scanf("%lf%lf%lf", &s[i], &k[i], &vv[i]);
	}
	while(r-l>=eps) {
		lf mid=(l+r)/2;
		if(got(mid)<=E) {
			r=mid;
		}
		else {
			l=mid;
		}
	}
	got((l+r)/2);
	lf ans=0;
	for(int i=1; i<=n; ++i) {
		ans+=s[i]/v[i];
	}
	printf("%.9f\n", ans);
	return 0;
}
posted @ 2015-11-22 14:05  iwtwiioi  阅读(352)  评论(0编辑  收藏  举报