【BZOJ】2693: jzptab
http://www.lydsy.com/JudgeOnline/problem.php?id=2693
题意:求$\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)$, $n,m \le 1e7$, 多个询问$q \le 10000$
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N=1e7+10, MD=100000009; int p[N], pcnt, mx; bool np[N]; ll g[N]; void init() { g[1]=1; int i, j, t; for(i=2; i<=mx; ++i) { if(!np[i]) p[++pcnt]=i, g[i]=1-i; for(j=1; j<=pcnt; ++j) { t=p[j]*i; if(t>mx) break; np[t]=1; if(i%p[j]==0) { g[t]=g[i]; break; } g[t]=g[i]*(1-p[j]); } } for(i=2; i<=mx; ++i) g[i]*=i; for(i=1; i<=mx; ++i) g[i]+=g[i-1], g[i]%=MD; } int nn[10005], mm[10005]; int main() { int t; scanf("%d", &t); for(int i=1; i<=t; ++i) scanf("%d %d", &nn[i], &mm[i]), mx=max(max(nn[i], mm[i]), mx); init(); for(int k=1; k<=t; ++k) { int n=nn[k], m=mm[k]; if(n>m) swap(n, m); ll ans=0, t1, t2; for(int i=1, pos=0; i<=n; i=pos+1) { pos=min(n/(n/i), m/(m/i)); t1=((ll)(n/i)*(n/i+1)/2)%MD; t2=((ll)(m/i)*(m/i+1)/2)%MD; ans+=((g[pos]-g[i-1])*((t1*t2)%MD))%MD; ans%=MD; } printf("%lld\n", ((ans%MD)+MD)%MD); } return 0; }
题解:参见上一题,bzoj2154 http://www.cnblogs.com/iwtwiioi/p/4268926.html
博客地址:www.cnblogs.com/iwtwiioi 本文为博主原创文章,未经博主允许不得转载。一经发现,必将追究法律责任。