【POJ】2318 TOYS(计算几何基础+暴力)

http://poj.org/problem?id=2318

第一次完全是$O(n^2)$的暴力为什么被卡了~QAQ(一定是常数太大了...)

后来排序了下点然后单调搞了搞。。(然而还是可以随便造出让我的code变成$O(n^2)$的23333)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const int N=5015;
struct dat { ll x, y; }E[2], a[N][2], b[N];
ll Cross(dat &a, dat &b, dat &c) {
	static ll x1, x2, y1, y2;
	x1=a.x-c.x; y1=a.y-c.y;
	x2=b.x-c.x; y2=b.y-c.y;
	return x1*y2-x2*y1;
}
int ans[N];

bool check(dat &l1, dat &l2, dat &r1, dat &r2, dat &p) {
	if(Cross(p, l1, l2)*Cross(p, r1, r2)<0) return 1;
	return 0;
}

int n, m;
void work(int last, dat p) {
	int xxx=n+1;
	for1(now, last, xxx) {
		if(check(a[now-1][0], a[now-1][1], a[now][0], a[now][1], p)) { ++ans[now-1]; return; }
	}
}


bool cmp(const dat &a, const dat &b) { return a.x<b.x; }

int main() {
	while(read(n), n) {
		read(m);
		rep(i, 2) read(E[i].x), read(E[i].y);
		a[0][0].x=E[0].x; a[0][0].y=E[0].y;
		a[0][1].x=E[0].x; a[0][1].y=E[1].y;
		a[n+1][0].x=E[1].x; a[n+1][0].y=E[0].y;
		a[n+1][1].x=E[1].x; a[n+1][1].y=E[1].y;
		for1(i, 1, n) rep(k, 2) read(a[i][k].x), a[i][k].y=E[k].y;
		for1(i, 1, m) read(b[i].x), read(b[i].y);
		sort(b+1, b+1+m, cmp);
		int last=1;
		for1(i, 1, m) {
			while(last<=n && max(a[last][0].x, a[last][1].x)<b[i].x) ++last;
			work(last, b[i]);
		}
		rep(i, n+1) printf("%d: %d\n", i, ans[i]), ans[i]=0;
		puts("");
	}
	return 0;
}

  

 

 


 

 

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys. 

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
 5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1

0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

posted @ 2015-01-01 20:25  iwtwiioi  阅读(197)  评论(0编辑  收藏  举报