【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)
http://www.lydsy.com/JudgeOnline/problem.php?id=2818
我很sb的丢了原来做的一题上去。。
其实这题可以更简单。。
设
$$f[i]=1+2 \times \phi (i) $$
那么答案就是
$$\sum_{p是质数} f[n/p]$$
就丢原来的题了。。。不写了。。
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <map> using namespace std; typedef long long ll; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << (#x) << " = " << (x) << endl #define error(x) (!(x)?puts("error"):0) inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } #define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) const int N=10000005; int p[N], cnt, np[N], mu[N], g[N], sum[N]; void init() { mu[1]=1; for2(i, 2, N) { if(!np[i]) p[++cnt]=i, mu[i]=-1, g[i]=1; for1(j, 1, cnt) { int t=p[j]*i; if(t>=N) break; np[t]=1; if(i%p[j]==0) { mu[t]=0; g[t]=mu[i]; break; } mu[t]=-mu[i]; g[t]=mu[i]-g[i]; } } for2(i, 1, N) sum[i]=sum[i-1]+g[i]; } int main() { init(); int n=getint(); ll ans=0; int pos; for(int i=1; i<=n; i=pos+1) { pos=min(n/(n/i), n/(n/i)); ans+=(ll)(sum[pos]-sum[i-1])*(n/i)*(n/i); } printf("%lld\n", ans); return 0; }
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
博客地址:www.cnblogs.com/iwtwiioi 本文为博主原创文章,未经博主允许不得转载。一经发现,必将追究法律责任。