【BZOJ】1053: [HAOI2007]反素数ant(贪心+dfs)
http://www.lydsy.com/JudgeOnline/problem.php?id=1053
约数个数等于分解出的质因数的(指数+1)的乘积这个就不用说了吧。。。
然后好神的题在于贪心。。。orz
首先分解质因子后,较小的数的指数一定大于等于较大的数的指数。(否则可以将较大的数多出来的质数填到小的数那里也符合条件)
然后对于约数个数相同的数,那么选最小的数(显然的吧)
所以按前边的分析连乘12个质因子就会超过20亿,因此只需要枚举12个即可
然后就过了orz
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <map> using namespace std; typedef long long ll; #define pii pair<int, int> #define mkpii make_pair<int, int> #define pdi pair<double, int> #define mkpdi make_pair<double, int> #define pli pair<ll, int> #define mkpli make_pair<ll, int> #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << (#x) << " = " << (x) << endl #define error(x) (!(x)?puts("error"):0) #define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; } #define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const ll p[13]={0,2,3,5,7,11,13,17,19,23,29,31,37}; ll n; int ans1, ans2; void dfs(int now, ll sum, int cnt, int last) { if(sum>n || now>12) return; if(ans2==cnt && ans1>sum) ans1=sum; if(ans2<cnt) ans1=sum, ans2=cnt; ll t=1; for1(i, 0, last) { dfs(now+1, sum*t, cnt*(i+1), i); t*=p[now]; if(t>n) return; } } int main() { read(n); dfs(1, 1, 1, 30); print(ans1); return 0; }
Description
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
Input
一个数N(1<=N<=2,000,000,000)。
Output
不超过N的最大的反质数。
Sample Input
1000
Sample Output
840
HINT
Source
博客地址:www.cnblogs.com/iwtwiioi 本文为博主原创文章,未经博主允许不得转载。一经发现,必将追究法律责任。