【BZOJ】1629: [Usaco2007 Demo]Cow Acrobats(贪心+排序)
http://www.lydsy.com/JudgeOnline/problem.php?id=1629
这题我想了很久都没想出来啊。。。
其实任意两头相邻的牛交换顺序对其它牛是没有影响的。。
那么我们考虑哪个在前。。(假设现在是待交换的是 a和b,a<b)
当重b-力a < 重a-力b时,就不需交换,否则交换。。
这个贪心自己想想就懂了的。。
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; } inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005; int n; struct nod { int x, y; } p[N]; bool cmp(const nod &a, const nod &b) { return b.x-a.y<a.x-b.y; } int main() { read(n); for1(i, 1, n) read(p[i].x), read(p[i].y); sort(p+1, p+1+n, cmp); int sum=0, ans=(~0u>>1)+1; for3(i, n, 1) { ans=max(ans, sum-p[i].y); sum+=p[i].x; } print(ans); return 0; }
Description
Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts. The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves within this stack. Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows. //有三个头牛,下面三行二个数分别代表其体重及力量 //它们玩叠罗汉的游戏,每个牛的危险值等于它上面的牛的体重总和减去它的力量值,因为它要扛起上面所有的牛嘛. //求所有方案中危险值最大的最小
Input
* Line 1: A single line with the integer N. * Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.
Output
* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.
Sample Input
3
10 3
2 5
3 3
10 3
2 5
3 3
Sample Output
2
OUTPUT DETAILS:
Put the cow with weight 10 on the bottom. She will carry the other
two cows, so the risk of her collapsing is 2+3-3=2. The other cows
have lower risk of collapsing.
OUTPUT DETAILS:
Put the cow with weight 10 on the bottom. She will carry the other
two cows, so the risk of her collapsing is 2+3-3=2. The other cows
have lower risk of collapsing.
HINT
Source
博客地址:www.cnblogs.com/iwtwiioi 本文为博主原创文章,未经博主允许不得转载。一经发现,必将追究法律责任。