深入理解计算机原理(csapp第三版)——datalab
代码:https://gitee.com/iwehdio/csapp-lab
1. bitXor
bitXor - x^y using only ~ and &
Example: bitXor(4, 5) = 1
Legal ops: ~ &
Max ops: 14
Rating: 1
- 异或,只能用~和&,操作数最大14个
int bitXor(int x, int y) {
int res = ~(~(x & ~y) & ~(~x & y));
return res;
}
- 思路
- 异或,就是不同时才为1,相同时为0。那么,使用非~就可以找出,x & y为1的位就是x为1但是y为0的位,x & y为1的位就是x为0但是y为1的位。
- 找出异或为1的位后,需要做一个或运算,但是本题中不能用|。用~(a | b)==~a & ~b来代替。
- 其他答案
int bitXor(int x, int y) {
return ~(~x&~y)&~(x&y);
}
- 这个利用的是,x&y为1的位是同时为0的,x&y为1的位是同时为1的,那么其按位非就是不同时为1且不同时为0的。
2. tmin
tmin - return minimum two's complement integer
Legal ops: ! ~ & ^ | + << >>
Max ops: 4
Rating: 1
- 2的补码的最小值
int tmin(void) {
int res = 1 << 31;
return res;
}
- 只把符号位置为1就行了
3. isTmax
isTmax - returns 1 if x is the maximum, two's complement number, and 0 otherwise
Legal ops: ! ~ & ^ | +
Max ops: 10
Rating: 1
- 如果返回的是补码的最大值,就返回1
int isTmax(int x) {
int addOne = x + 1;
int res = addOne ^ ~x;
return !(res + !addOne);
}
- 一个数的相反数的表示和这个数加一一样,这种情况只存在于符号转变的从-1到0和从TMax到TMin之间。排除0的情况就是TMax了
4. allOddBits
allOddBits - return 1 if all odd-numbered bits in word set to 1 where bits are numbered from 0 (least significant) to 31 (most significant)
Examples allOddBits(0xFFFFFFFD) = 0, allOddBits(0xAAAAAAAA) = 1
Legal ops: ! ~ & ^ | + << >>
Max ops: 12
Rating: 2
- 如果所有的奇数位都为1就返回1,位数是从零开始数的。
int allOddBits(int x) {
int mask = 0xAA;
mask |= mask << 8;
mask |= mask << 16;
int res = (x & mask) ^ mask;
return !res;
}
5. negate
negate - return -x
Example: negate(1) = -1.
Legal ops: ! ~ & ^ | + << >>
Max ops: 5
Rating: 2
- 返回负数
int negate(int x) {
int res = ~x + 1;
return res;
}
- 相反数就是补码加一
6. isAsciiDigit
isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
Example: isAsciiDigit(0x35) = 1.
isAsciiDigit(0x3a) = 0.
isAsciiDigit(0x05) = 0.
Legal ops: ! ~ & ^ | + << >>
Max ops: 15
Rating: 3
- 返回数值在0x30和0x39之间的数
int isAsciiDigit(int x) {
int highBit = !((x >> 4) ^ 0x3);
int bitOne = (x>>3) & 0x1;
int bit23 = (x>>1) & 0x3;
return highBit & (!bitOne | !bit23);
}
- 0x30 → 0011 0000 0x39 → 0011 1001
- 在这个范围内的,首先第一位必须是0011
- 其次第二位有两种情况,最高位为0时,总是符合(0000~0111);最高位为1时,必须有中间两位为0(1000,1001)
- 其他答案
- 可以使用两个数,一个数是加上比0x39大的数后符号由正变负,另一个数是加上比0x30小的值时是负数。这两个数是代码中初始化的
upperBound
和lowerBound
,然后加法之后获取其符号位判断即可
- 可以使用两个数,一个数是加上比0x39大的数后符号由正变负,另一个数是加上比0x30小的值时是负数。这两个数是代码中初始化的
int isAsciiDigit(int x) {
int sign = 0x1<<31;
int upperBound = ~(sign|0x39);
int lowerBound = ~0x30;
upperBound = sign&(upperBound+x)>>31;
lowerBound = sign&(lowerBound+1+x)>>31;
return !(upperBound|lowerBound);
}
7. conditional
conditional - same as x ? y : z
Example: conditional(2,4,5) = 4
Legal ops: ! ~ & ^ | + << >>
Max ops: 16
Rating: 3
- 实现一个三元表达式
int conditional(int x, int y, int z) {
int flag = ~!!x + 1;
return (flag & y) | (~flag & z);
}
- 把flag构造为全0或者全1的来与y和z进行与。
- 如果x非0,那么~!!x + 1就是全1;如果x是0,那么~!!x + 1就是全0
8. isLessOrEqual
isLessOrEqual - if x <= y then return 1, else return 0
Example: isLessOrEqual(4,5) = 1.
Legal ops: ! ~ & ^ | + << >>
Max ops: 24
Rating: 3
- 实现一个小于等于
int isLessOrEqual(int x, int y) {
int diff = ~x + y + 1;
int signX = (x>>31) & 0x1;
int signY = (y>>31) & 0x1;
int signD = (diff>>31) & 0x1;
int sameSign = !(signX ^ signY);
return (sameSign & !signD) | (!sameSign & signX);
}
- 虽然不能用减法,但是比较大小就是做差的过程。转换目标为y-x≥0,因为大于等于0的符号位都是0.
- 首先用y-x=~x+y+1算出差的位级表示,但是这个结果是可能溢出的,需要判断是否溢出。
- 如果x和y的符号一致,肯定是不会溢出的;如果溢出的话,那么y-x≥0就取决于x和y的符号了(他俩一定是相反的)
9. logicalNeg
logicalNeg - implement the ! operator, using all of the legal operators except !
Examples: logicalNeg(3) = 0, logicalNeg(0) = 1
Legal ops: ~ & ^ | + << >>
Max ops: 12
Rating: 4
- 实现逻辑非的表示。
int logicalNeg(int x) {
int com = ~x + 1;
int signOrigin = (x>>31) & 0x1;
int signCom = (com>>31) & 0x1;
int sameSign = signOrigin ^ signCom ^ 0x1;
return sameSign & (((x>>31) & 0x1) ^ 0x1);
}
- 基本思路就是,既然只有一个输入x,那么要么是对x进行变换后比较,要么是和固定值比较。
- 把x和-x的符号进行比较,如果不同那么就输出0;如果相同且不是0x80000000就返回1。
- 主要是要用异或实现对指定位的非操作
- 其他答案
- 还是利用符号位,只不过要简单一些。直接把x和-x的符号做或,如果为1就返回1,如果为0就返回0。使用右移31位,符号位为0就是0,符号位为1就是-1,加1即可
int logicalNeg(int x) {
return ((x|(~x+1))>>31)+1;
}
10. howManyBits
howManyBits - return the minimum number of bits required to represent x in two's complement *
Examples:
howManyBits(12) = 5
howManyBits(298) = 10
howManyBits(-5) = 4
howManyBits(0) = 1
howManyBits(-1) = 1
howManyBits(0x80000000) = 32
Legal ops: ! ~ & ^ | + << >>
Max ops: 90
Rating: 4
- 一个数用补码表示最少需要几位?
int howManyBits(int x) {
int sign = x>>31;
int y = (sign & ~x) | (~sign & x);
int b16 = (!!(y>>16))<<4; //高十六位是否有1
y = y>>b16; //如果有(至少需要16位),则将原数右移16位
int b8 = (!!(y>>8))<<3; //剩余位高8位是否有1
y = y>>b8; //如果有,则右移8位
int b4 = (!!(y>>4))<<2;
y = y>>b4;
int b2 = (!!(y>>2))<<1;
y = y>>b2;
int b1 = !!(y>>1);
y = y>>b1;
int b0 = y;
return b16 + b8 + b4 + b2 + b1 + b0 + 1;
}
- 位运算也不定不能用二分,这道题就相当于层层二分了。
- 对于正数,最少位数为最高位的1加一个符号位;对于负数,最少位数为最高位的0加一个符号位。所以可以直接把负数转成补码处理。
- 用两个非!!来测试范围内有没有1,层层二分,如果范围内有就位移并加上这个范围。
11. floatScale2
floatScale2 - Return bit-level equivalent of expression 2*f for floating point argument f.
Both the argument and result are passed as unsigned int's, but they are to be interpreted as the bit-level representation of single-precision floating point values.
When argument is NaN, return argument
Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
Max ops: 30
Rating: 4
- 求2乘以一个浮点数
unsigned floatScale2(unsigned uf) {
unsigned sign = uf >> 31;
unsigned exp = (uf >> 23) & 0xFF;
unsigned frac = uf & 0x7FFFFF;
if(exp==0xFF) {
return uf;
} else if(exp!=0) {
exp += 1;
} else {
if((frac>>22)&0x1) {
frac = frac & ~0x800000;
exp = 1;
}
frac = frac<<1;
}
return (sign<<31) | (exp<<23) | frac;
}
- 区分无穷/NaN,返回其本身。问题是其实无穷也应该返回NaN,但是直接返回无穷不会报错。
- 规格化数直接exp加一;非规格化数如果最高位是1就要规格化。
12. floatFloat2Int
floatFloat2Int - Return bit-level equivalent of expression (int) f for floating point argument f.
Argument is passed as unsigned int, but it is to be interpreted as the bit-level representation of a single-precision floating point value.
Anything out of range (including NaN and infinity) should return 0x80000000u.
Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
Max ops: 30
Rating: 4
- 把浮点数转换为整数
int floatFloat2Int(unsigned f) {
unsigned sign = f >> 31;
unsigned exp = (f >> 23) & 0xFF;
unsigned frac = f & 0x7FFFFF;
unsigned e, half, round, rest;
int k = 23;
int bias = 127;
if(exp==0xFF) {
return 0x80000000;
}
if(exp < bias) { //(1<<(8-1))-1
return 0;
} else {
frac |= 0x800000;
e = exp - bias;
if(e<k) {
half = 1<<(k - e - 1);
round = frac & ((1<<(k - e)) - 1);
rest = frac >> (k - e);
if(round>half) {
rest += 1;
} else {
if(round==half && (rest & 0x1)) {
rest += 1;
}
}
} else if(e<31) {
rest = frac << (e - k);
} else {
return 0x80000000;
}
}
if(sign) {
rest = ~rest + 1;
}
return rest;
}
- 比较麻烦的是处理向偶数舍入
13. floatPower2
floatPower2 - Return bit-level equivalent of the expression 2.0^x (2.0 raised to the power x) for any 32-bit integer x.
The unsigned value that is returned should have the identical bit representation as the single-precision floating-point number 2.0^x.
If the result is too small to be represented as a denorm, return 0. If too large, return +INF.
Legal ops: Any integer/unsigned operations incl. ||, &&. Also if, while
Max ops: 30
Rating: 4
- 输入一个整数x,返回他的2x2^x2x
unsigned floatPower2(int x) {
int k = 23;
int bias = 127;
unsigned frac;
unsigned exp;
if(x>bias) {
return 0x7F800000;
} else if(x>=-bias) {
exp = x + bias;
frac = 0;
} else if(x>=-bias-k+2) {
exp = 0;
frac = 1<<(bias+k-2+x);
} else {
return 0x0;
}
return (exp<<k) | frac;
}
- 比较麻烦的是要处理非规格数。此外需要把超时时间调大一点,不然会运行不完。