九连环(规律--数学的奥妙)

题目描述

九连环是一种源于中国的传统智力游戏。如图所示,九个圆环套在一把“剑”上,并且互相牵连。游戏的目标是把九个圆环从“剑”上卸下。
圆环的装卸需要遵守两个规则。
第一个(最右边)环任何时候都可以装上或卸下。
如果第k个环没有被卸下,且第k个环右边的所有环都被卸下,则第k+1个环(第k个环左边相邻的环)可以任意装上或卸下。
与魔方的千变万化不同,解九连环的最优策略是唯一的。为简单起见,我们以“四连环”为例,演示这一过程。这里用1表示环在“剑”上,0表示环已经卸下。
初始状态为1111,每部的操作如下:
1101(根据规则2,卸下第2个环)
1100(根据规则1,卸下第1个环)
0100(根据规则2,卸下第4个环)
0101(根据规则1,装上第1个环)
0111(根据规则2,装上第2个环)
0110(根据规则1,卸下第1个环)
0010(根据规则2,卸下第3个环)
0011(根据规则1,装上第1个环)
0001(根据规则2,卸下第2个环)
0000(根据规则1,卸下第1个环)
由此可见,卸下“四连环”至少需要10步。随着环数增加,需要的步数也会随之增多。例如卸下九连环,就至少需要341步。
请你计算,有n个环的情况下,按照规则,全部卸下至少需要多少步。

 

输入

输入第一行为一个整数m ,表示测试点数目。
接下来m行,每行一个整数n。

 

输出

输出共m行,对应每个测试点的计算结果。

 

样例输入

3
3
5
9

 

样例输出

5
21
341

 

提示

对于10%的数据,1≤n≤10。
对于30%的数据,1≤n≤30。
对于100%的数据,1≤n≤105,1≤m≤10。

 

九圆环这个东西真的很神奇

对于N环,解N连环,就是先解一个N-2连环,再解最后一个环,再上N-2连环,再解N-1连环。

F(N)= 2F(N-2)+F(N-1)+1 ===== F(N) = 2F(N-1)+1 (N&1==1)    F(N) = 2F(N-1) (N & 1 == 0)

另外,九连环和格雷码有着密切关系。

如11111,将右端看作第一环,那么他的各种状态当成格雷码,将其转换为对应的二进制就是该状态对应步数,若是求一种状态到另一种状态,相减即可。

在将其一和二环操作合并后还有别的知识,大家可以去找找

 1 import java.util.*;
 2 import java.math.BigInteger;
 3  
 4 public class Main {
 5     public static void main(String args[]) {
 6         Scanner cin = new Scanner(System.in);
 7         int t = cin.nextInt();
 8         while (t-- != 0) {
 9             int n = cin.nextInt();
10             BigInteger ans = BigInteger.ONE;
11             for (int i = 2; i <= n; i++) {
12                 ans = ans.multiply(BigInteger.valueOf(2));
13                 if (i % 2 == 1) {
14                     ans = ans.add(BigInteger.ONE);
15                 }
16             }
17             System.out.println(ans);
18         }
19  
20     }
21 }
View Code

 

 

 

posted @ 2018-08-08 01:48  进击的黑仔  阅读(3299)  评论(0编辑  收藏  举报