Maximum repetition substring POJ - 3693 (后缀数组)
The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.
Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.
Input
The input consists of multiple test cases. Each test case contains exactly one line, which
gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.
The last test case is followed by a line containing a '#'.
Output
For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.
Sample Input
ccabababc daabbccaa #
Sample Output
Case 1: ababab Case 2: aa
题意:给出字符串,求出其中重复次数最多的,然后字典序最小的子串。
思路:我们可以枚举循环节长度,对于一个循环节长度为mid的子串,那么假设其中一个位置为pos,那么pos+mid必然也在其中,那么就是求两个最长公共前缀了,如果
最长公共前缀是mid的整数倍,那么答案就是lcp/mid+1,如果不是,那可能前面还有一部分可以使得匹配次数增加,那么就将pos前推,再次比较一次,更新答案。
对于字典序,我们可以把符合要求的所有答案长度记录下来,然后从1到n枚举sa数组的位置,然后看看RMQ(rk【sa[i]】,rk【sa[i]+len】) 是否符合(ans-1)*len,是就停下
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 using namespace std; 6 7 const int maxn = 1e5+5; 8 char s[maxn]; 9 int sa[maxn],t[maxn],t2[maxn],c[maxn],n; 10 11 void build_sa(int n,int m) 12 { 13 int i,*x=t,*y=t2; 14 for(i=0; i<m; i++)c[i]=0; 15 for(i=0; i<n; i++)c[x[i]=s[i]]++; 16 for(i=1; i<m; i++)c[i] += c[i-1]; 17 for(i=n-1; i>=0; i--)sa[--c[x[i]]] = i; 18 for(int k=1; k<=n; k<<=1) 19 { 20 int p=0; 21 for(i=n-k; i<n; i++)y[p++]=i; 22 for(i=0; i<n; i++)if(sa[i] >= k)y[p++] = sa[i]-k; 23 for(i=0; i<m; i++)c[i] = 0; 24 for(i=0; i<n; i++)c[x[y[i]]]++; 25 for(i=1; i<m; i++)c[i] += c[i-1]; 26 for(i=n-1; i>=0; i--)sa[--c[x[y[i]]]] = y[i]; 27 swap(x,y); 28 p=1; 29 x[sa[0]]=0; 30 for(i=1; i<n; i++) 31 x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+k] == y[sa[i]+k]?p-1:p++; 32 if(p>=n)break; 33 m = p; 34 } 35 } 36 37 int rk[maxn],ht[maxn]; 38 void getHeight(int n) 39 { 40 int i,j,k=0; 41 for(i=1; i<=n; i++)rk[sa[i]] = i; 42 for(i=0; i<n; i++) 43 { 44 if(k)k--; 45 int j=sa[rk[i]-1]; 46 while(s[i+k] == s[j+k])k++; 47 ht[rk[i]] = k; 48 } 49 } 50 51 int pre[maxn],f[maxn][20]; 52 void ST_pre() 53 { 54 int t = log2(n)+1; 55 for(int i=1; i<=n; i++)f[i][0] = ht[i]; 56 for(int i=1; i<t; i++) 57 { 58 for(int j=1; j<=n-(1<<i)+1; j++) 59 { 60 f[j][i] = min(f[j][i-1],f[j+(1<<(i-1))][i-1]); 61 } 62 } 63 } 64 int RMQ(int x,int y) 65 { 66 if(x > y)swap(x,y); 67 x++; 68 int k = pre[y-x+1]; 69 return min(f[x][k],f[y-(1<<k)+1][k]); 70 } 71 72 int cmp(int pos1,int pos2) 73 { 74 for(int i=0; pos1+i<n && pos2+i<n; i++) 75 { 76 if(s[pos1+i] < s[pos2+i])return -1; 77 else if(s[pos1+i] > s[pos2+i])return 1; 78 } 79 return 0; 80 } 81 int anslen[maxn],pos,poslen,ans,top; 82 void check() 83 { 84 ans = top = poslen = 0; 85 for(int len = 1; len<n; len++) 86 { 87 for(int i=0; i+len < n; i+=len) 88 { 89 int lcp = RMQ(rk[i],rk[i+len]); 90 int tmpans = lcp/len+1; 91 int tmpres = len - lcp % len; 92 tmpres = i - tmpres; 93 if(tmpres >= 0 && lcp % len) 94 { 95 if(RMQ(rk[tmpres],rk[tmpres+len]) > lcp)tmpans++; 96 } 97 if(tmpans > ans) 98 { 99 ans = tmpans; 100 top = 0; 101 anslen[++top] = len; 102 } 103 else if(tmpans == ans) 104 { 105 //printf("%d %d ===\n",tmpans,ans); 106 anslen[++top] = len; 107 } 108 } 109 } 110 for(int i=1;i<=n;i++) 111 { 112 for(int j=1;j<=top;j++) 113 { 114 if(RMQ(rk[sa[i]],rk[sa[i]+anslen[j]]) >= (ans-1)*anslen[j]) 115 { 116 pos = sa[i]; 117 poslen = ans*anslen[j]; 118 break; 119 } 120 } 121 if(poslen)break; 122 } 123 for(int i=pos; i<pos+poslen; i++) 124 { 125 printf("%c",s[i]); 126 } 127 puts(""); 128 } 129 130 int main() 131 { 132 for(int i=1; i<=maxn; i++)pre[i] = log2(i); 133 int cas = 0; 134 while(~scanf("%s",s) && s[0] != '#') 135 { 136 n = strlen(s); 137 s[n] = 0; 138 build_sa(n+1,180); 139 getHeight(n); 140 ST_pre(); 141 printf("Case %d: ",++cas); 142 check(); 143 } 144 }