【面试】二叉树遍历的非递归实现

 


面试时,一般都会对二叉树进行考察,其中二叉树遍历的非递归方法经常会被面试官提到(因为递归方法太简单了,有时不懂也可以写出来),本文主要讲二叉树遍历的非递归方法(过段时间会整理出来一个关于二叉树面试的专题,本文将作为其中的一部分)。


 1. 二叉树遍历的非递归实现

void Bst::preOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    BstNode* pCur = root;
    stack<BstNode*> s;
    while(pCur || !s.empty()){
        while(pCur){
            s.push(pCur);
            cout<<pCur->val<<" ";
            pCur = pCur->left;
        }
        if(!s.empty()){
            pCur = s.top();
            s.pop();
            pCur = pCur->right;
        }
    }
}

void Bst::inOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    stack<BstNode*> s;
    BstNode* pCur = root;
    while(pCur || !s.empty()){
        while(pCur){
            s.push(pCur);
            pCur = pCur->left;
        }
        if(!s.empty()){
            pCur = s.top();
            cout<<pCur->val<<" ";
            s.pop();
            pCur = pCur->right;
        }
    }
}

void Bst::postOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    stack<BstNode*> s;
    BstNode* pCur = root;
    BstNode* pLast = NULL;

    while(pCur){
        s.push(pCur);
        pCur = pCur->left;
    }

    while(!s.empty()){
        pCur = s.top();
        s.pop();
        if(pCur->right == NULL || pCur->right == pLast){
            cout<<pCur->val<<" ";
            pLast = pCur;
        }
        else if(pCur->left == pLast){
            s.push(pCur);
            pCur = pCur->right;
            while(pCur){
                s.push(pCur);
                pCur = pCur->left;
            }
        }
    }
}

2. 完整测试代码(可直接运行)

/*
* @Author: z.c.wang
* @Email:  iwangzhengchao@gmail.com
* @Date:   2018-10-12 21:08:15
* @Last Modified time: 2019-03-16 17:20:31
*/

#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;

class BstNode {
public:
    int val;
    BstNode* left;
    BstNode* right;
    BstNode(int x):
        val(x), left(NULL), right(NULL){};
};

class Bst{
public:
    BstNode *root;
    Bst():
        root(NULL){}

    void insert(int value);
    void preOrder(BstNode* root);
    void inOrder(BstNode* root);
    void postOrder(BstNode* root);
    void preOrderWithoutRecursion(BstNode* root);
    void inOrderWithoutRecursion(BstNode* root);
    void postOrderWithoutRecursion(BstNode* root);
};


void Bst::insert(int value){
    BstNode* pRoot = root;
    // 空树
    if(pRoot == NULL)
        root = new BstNode(value);
    // 非空
    else{
        BstNode* temp;
        while(pRoot!= NULL && pRoot->val!=value){
            temp = pRoot;
            if(pRoot->val > value)
                pRoot = pRoot->left;
            else
                pRoot = pRoot->right;
        }
        pRoot = temp;
        if(pRoot->val > value)
            pRoot->left = new BstNode(value);
        else
            pRoot->right = new BstNode(value);
    }
    cout<<"the value "<<value<<" is inserted."<<endl;
}


void Bst::inOrder(BstNode* root){
    if(root == NULL)
        return ;
    inOrder(root->left);
    cout<<root->val<<" ";
    inOrder(root->right);
}

void Bst::preOrder(BstNode* root){
    if(root == NULL)
        return ;
    cout<<root->val<<" ";
    preOrder(root->left);
    preOrder(root->right);
}

void Bst::postOrder(BstNode* root){
    if(root == NULL)
        return ;
    postOrder(root->left);
    postOrder(root->right);
    cout<<root->val<<" ";
}

void Bst::preOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    BstNode* pCur = root;
    stack<BstNode*> s;
    while(pCur || !s.empty()){
        while(pCur){
            s.push(pCur);
            cout<<pCur->val<<" ";
            pCur = pCur->left;
        }
        if(!s.empty()){
            pCur = s.top();
            s.pop();
            pCur = pCur->right;
        }
    }
}

void Bst::inOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    stack<BstNode*> s;
    BstNode* pCur = root;
    while(pCur || !s.empty()){
        while(pCur){
            s.push(pCur);
            pCur = pCur->left;
        }
        if(!s.empty()){
            pCur = s.top();
            cout<<pCur->val<<" ";
            s.pop();
            pCur = pCur->right;
        }
    }
}

void Bst::postOrderWithoutRecursion(BstNode* root){
    if(root == NULL)
        return ;
    stack<BstNode*> s;
    BstNode* pCur = root;
    BstNode* pLast = NULL;

    while(pCur){
        s.push(pCur);
        pCur = pCur->left;
    }

    while(!s.empty()){
        pCur = s.top();
        s.pop();
        if(pCur->right == NULL || pCur->right == pLast){
            cout<<pCur->val<<" ";
            pLast = pCur;
        }
        else if(pCur->left == pLast){
            s.push(pCur);
            pCur = pCur->right;
            while(pCur){
                s.push(pCur);
                pCur = pCur->left;
            }
        }
    }
}


int main(int argc, char const *argv[])
{
    Bst tree;
    int arr[] = {62, 58, 47, 35, 29,
                 37, 36, 51, 49, 48,
                 50, 56, 88, 73, 99, 93};
    for(int i=0; i<16; i++)
        tree.insert(arr[i]);
    cout<<endl<<"前序遍历: ";
    tree.preOrder(tree.root);
    cout<<endl<<"前序遍历: ";
    tree.preOrderWithoutRecursion(tree.root);

    cout<<endl<<"中序遍历: ";
    tree.inOrder(tree.root);
    cout<<endl<<"中序遍历: ";
    tree.inOrderWithoutRecursion(tree.root);

    cout<<endl<<"后序遍历: ";
    tree.postOrder(tree.root);
    cout<<endl<<"后序遍历: ";
    tree.postOrderWithoutRecursion(tree.root);
    return 0;
}

3. 测试结果

(运行结果中的第一个表示递归方法,第二个表示非递归方法,可见结果相同)

the value 62 is inserted.
the value 58 is inserted.
the value 47 is inserted.
the value 35 is inserted.
the value 29 is inserted.
the value 37 is inserted.
the value 36 is inserted.
the value 51 is inserted.
the value 49 is inserted.
the value 48 is inserted.
the value 50 is inserted.
the value 56 is inserted.
the value 88 is inserted.
the value 73 is inserted.
the value 99 is inserted.
the value 93 is inserted.

前序遍历: 62 58 47 35 29 37 36 51 49 48 50 56 88 73 99 93 
前序遍历: 62 58 47 35 29 37 36 51 49 48 50 56 88 73 99 93 
中序遍历: 29 35 36 37 47 48 49 50 51 56 58 62 73 88 93 99 
中序遍历: 29 35 36 37 47 48 49 50 51 56 58 62 73 88 93 99 
后序遍历: 29 36 37 35 48 50 49 56 51 47 58 73 93 99 88 62 
后序遍历: 29 36 37 35 48 50 49 56 51 47 58 73 93 99 88 62

 

posted on 2019-03-16 17:26  wangzhch  阅读(632)  评论(0编辑  收藏  举报

导航