Floyd算法简单实现(C++)

图的最短路径问题主要包括三种算法:

(1)Dijkstra (没有负权边的单源最短路径)

(2)Floyed (多源最短路径)

(3)Bellman (含有负权边的单源最短路径)

本文主要讲使用C++实现简单的Floyd算法,Floyd算法原理参见 Floyd–Warshall algorithm

Floyd算法简单实现(C++)

  1 #include<iostream>
  2 using namespace std;
  3 
  4 #define MAXVEX 10
  5 #define INFINITY 65535
  6 
  7 typedef int Patharc[MAXVEX][MAXVEX];
  8 typedef int ShortPathTable[MAXVEX][MAXVEX];
  9 
 10 typedef struct {
 11     int vex[MAXVEX];
 12     int arc[MAXVEX][MAXVEX];
 13     int numVertexes;
 14 } MGraph;
 15 
 16 // 构建图
 17 void CreateMGraph(MGraph *G){
 18     int i, j, k;
 19 
 20     // 初始化图
 21     G->numVertexes = 9;
 22     for(i = 0; i < G->numVertexes; ++i){
 23         G->vex[i] = i;
 24     }
 25     for(i = 0; i < G->numVertexes; ++i){
 26         for(j = 0; j < G->numVertexes; ++j){
 27             if(i == j)
 28                 G->arc[i][j] = 0;
 29             else
 30                 G->arc[i][j] = G->arc[j][i] = INFINITY;
 31         }
 32     }
 33 
 34     G->arc[0][1] = 1;
 35     G->arc[0][2] = 5;
 36 
 37     G->arc[1][2] = 3;
 38     G->arc[1][3] = 7;
 39     G->arc[1][4] = 5;
 40 
 41     G->arc[2][4] = 1;
 42     G->arc[2][5] = 7;
 43 
 44     G->arc[3][4] = 2;
 45     G->arc[3][6] = 3;
 46 
 47     G->arc[4][5] = 3;
 48     G->arc[4][6] = 6;
 49     G->arc[4][7] = 9;
 50 
 51     G->arc[5][7] = 5;
 52 
 53     G->arc[6][7] = 2;
 54     G->arc[6][8] = 7;
 55 
 56     G->arc[7][8] = 4;
 57 
 58     // 设置对称位置元素值
 59     for(i = 0; i < G->numVertexes; ++i){
 60         for(j = i; j < G->numVertexes; ++j){
 61             G->arc[j][i] = G->arc[i][j];
 62         }
 63     }
 64 }
 65 
 66 // Floyd algorithm
 67 void ShortPath_Floyd(MGraph G, Patharc P, ShortPathTable D){
 68     int i, j, k;
 69     // 二重循环,初始化P, D
 70     for(i = 0; i < G.numVertexes; ++i){
 71         for(j = 0; j < G.numVertexes; ++j){
 72             D[i][j] = G.arc[i][j];
 73             P[i][j] = j;
 74         }
 75     }
 76     // 三重循环, Floyd algorithm
 77     for(k = 0; k < G.numVertexes; ++k){
 78         for(i = 0; i < G.numVertexes; ++i){
 79             for(j = 0; j < G.numVertexes; ++j){
 80                 if(D[i][j] > D[i][k]+D[k][j]){
 81                     D[i][j] = D[i][k]+D[k][j];
 82                     P[i][j] = P[i][k];
 83                 }
 84             }
 85         }
 86     }
 87 }
 88 
 89 // 打印最短路径
 90 void PrintShortPath(MGraph G, Patharc P, ShortPathTable D){
 91     int i, j, k;
 92     cout<<"各顶点之间的最短路径如下: "<<endl;
 93     for(i = 0; i < G.numVertexes; ++i){
 94         for(j = i+1; j < G.numVertexes; ++j){
 95             cout<<"v"<<i<<"--"<<"v"<<j<<" "<<"weight: "<<D[i][j]<<"  Path: "<<i<<" -> ";
 96             k = P[i][j];
 97             while(k != j){
 98                 cout<<k<<" -> ";
 99                 k = P[k][j];
100             }
101             cout<<j<<endl;
102         }
103         cout<<endl;
104     }
105 }
106 
107 int main(int argc, char const *argv[]) {
108     MGraph G;
109     Patharc P;
110     ShortPathTable D;
111     CreateMGraph(&G);
112     ShortPath_Floyd(G, P, D);
113     PrintShortPath(G, P, D);
114     return 0;
115 }

运行结果:

各顶点之间的最短路径如下: 
v0--v1 weight: 1  Path: 0 -> 1
v0--v2 weight: 4  Path: 0 -> 1 -> 2
v0--v3 weight: 7  Path: 0 -> 1 -> 2 -> 4 -> 3
v0--v4 weight: 5  Path: 0 -> 1 -> 2 -> 4
v0--v5 weight: 8  Path: 0 -> 1 -> 2 -> 4 -> 5
v0--v6 weight: 10  Path: 0 -> 1 -> 2 -> 4 -> 3 -> 6
v0--v7 weight: 12  Path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7
v0--v8 weight: 16  Path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v1--v2 weight: 3  Path: 1 -> 2
v1--v3 weight: 6  Path: 1 -> 2 -> 4 -> 3
v1--v4 weight: 4  Path: 1 -> 2 -> 4
v1--v5 weight: 7  Path: 1 -> 2 -> 4 -> 5
v1--v6 weight: 9  Path: 1 -> 2 -> 4 -> 3 -> 6
v1--v7 weight: 11  Path: 1 -> 2 -> 4 -> 3 -> 6 -> 7
v1--v8 weight: 15  Path: 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v2--v3 weight: 3  Path: 2 -> 4 -> 3
v2--v4 weight: 1  Path: 2 -> 4
v2--v5 weight: 4  Path: 2 -> 4 -> 5
v2--v6 weight: 6  Path: 2 -> 4 -> 3 -> 6
v2--v7 weight: 8  Path: 2 -> 4 -> 3 -> 6 -> 7
v2--v8 weight: 12  Path: 2 -> 4 -> 3 -> 6 -> 7 -> 8

v3--v4 weight: 2  Path: 3 -> 4
v3--v5 weight: 5  Path: 3 -> 4 -> 5
v3--v6 weight: 3  Path: 3 -> 6
v3--v7 weight: 5  Path: 3 -> 6 -> 7
v3--v8 weight: 9  Path: 3 -> 6 -> 7 -> 8

v4--v5 weight: 3  Path: 4 -> 5
v4--v6 weight: 5  Path: 4 -> 3 -> 6
v4--v7 weight: 7  Path: 4 -> 3 -> 6 -> 7
v4--v8 weight: 11  Path: 4 -> 3 -> 6 -> 7 -> 8

v5--v6 weight: 7  Path: 5 -> 7 -> 6
v5--v7 weight: 5  Path: 5 -> 7
v5--v8 weight: 9  Path: 5 -> 7 -> 8

v6--v7 weight: 2  Path: 6 -> 7
v6--v8 weight: 6  Path: 6 -> 7 -> 8

v7--v8 weight: 4  Path: 7 -> 8


[Finished in 1.2s]

参考资料:

大话数据结构

Floyd–Warshall algorithm, Wikipedia

Floyd Warshall Algorithm | DP-16 , geeksforgeeks  

posted on 2019-01-14 17:26  wangzhch  阅读(4588)  评论(0编辑  收藏  举报

导航