【LOJ】#3020. 「CQOI2017」小 Q 的表格
#3020. 「CQOI2017」小 Q 的表格
这个的话求出来\(g = gcd(a,b)\)
会修改所有gcd为g的位置
我们要求\((g,g)\)这个位置的数一定是\(g^{2}\)的倍数
之后的\(gcd(a,b) == g\)的位置也会满足
$\frac{f(g,g)}{g^{2}} = \frac{f(a,b)}{ab} $
注意\(\frac{f(g,g)}{g^{2}}\),\(\frac{f(a,b)}{ab}\)都不一定是整数,但是\(f(g,g)\)和\(f(a,b)\)是
这样的话我们求出\(f(g,g)\)的值,很容易得到
\(ans = \sum_{d = 1}^{k} f(d,d) \sum_{i = 1}^{\lfloor \frac{k}{d} \rfloor} \sum_{j = 1}^{\lfloor \frac{k}{d} \rfloor} [gcd(i,j) == 1] i \cdot j\)
这个时候不要用\(\mu\) !不要用\(\mu\)!不要用\(\mu\)!
我们这么考虑,就是枚举一个\(i\),然后乘上\(i\)以内和\(i\)互质的数的和,由于顺序可以交换,所以要乘上1
\(i\)以内和\(i\)互质的数的公式是\(\frac{i\times \varphi(i)}{2}\)
\(1\)的话除外,不过由于外面乘了一个2,所以这个式子在这里对1成立
所以
\(ans = \sum_{d = 1}^{k} f(d,d) \sum_{i = 1}^{\lfloor \frac{k}{d} \rfloor} i^{2}\varphi(i)\)
后面的可以预处理,前面的话要更新前缀和,用分块实现\(O(\sqrt{N})\)维护和\(O(1)\)查询即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 4000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int M,N;
int f[MAXN],prime[MAXN],tot,phi[MAXN];
int h[MAXN],bl[2005],br[2005],id[MAXN],cnt,lz[2005];
int sum[MAXN];
bool nonprime[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(M);read(N);
phi[1] = 1;
h[1] = 1;
for(int i = 2 ; i <= N ; ++i) {
if(!nonprime[i]) {
prime[++tot] = i;
phi[i] = i - 1;
}
for(int j = 1 ; j <= tot ; ++j) {
if(prime[j] > N / i) break;
nonprime[i * prime[j]] = 1;
if(i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else {
phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
h[i] = mul(phi[i],mul(i,i));
update(h[i],h[i - 1]);
}
for(int i = 1 ; i <= N ; ++i) {
sum[i] = mul(i,i);
f[i] = mul(i,i);
update(sum[i],sum[i - 1]);
}
int S = sqrt(N);
for(int i = 1 ; i <= N ; ++i) {
int r = min(N,i + S - 1);
++cnt;
bl[cnt] = i;br[cnt] = r;i = r;
for(int j = bl[cnt] ; j <= br[cnt] ; ++j) id[j] = cnt;
}
int a,b,k;
int64 x;
for(int i = 1 ; i <= M ; ++i) {
read(a);read(b);read(x);read(k);
int g = gcd(a,b);
int d = (x / (1LL * a / g * b / g)) % MOD;
int c = inc(d,MOD - f[g]);
f[g] = d;
for(int j = g ; j <= br[id[g]] ; ++j) {
update(sum[j],c);
}
for(int j = id[g] + 1 ; j <= cnt ; ++j) update(lz[j],c);
int res = 0;
for(int j = 1 ; j <= k ; ++j) {
int r = k / (k / j);
int s = inc(sum[r],lz[id[r]]);
s = inc(s,MOD - inc(sum[j - 1],lz[id[j - 1]]));
update(res,mul(s,h[k / j]));
j = r;
}
out(res);enter;
}
return 0;
}