【AtCoder】AGC010

AGC010

A - Addition

如果所有数加起来是偶数那么一定可以,否则不行

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
	if(c == '-') f = -1;
	c = getchar();
    }
    while(c >= '0' && c <= '9') {
	res = res * 10 +c - '0';
	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
int N;
int t = 0;
void Solve() {
    read(N);
    int a;
    for(int i = 1 ; i <= N ; ++i) {
	read(a);
	t += (a & 1);
    }
    t = t & 1;
    if(t == 0) puts("YES");
    else puts("NO");
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

B - Boxes

大意:每次选取一个起始点i,循环加上一个等差数列,问能否达到目标状态

事实上,这才是我心目中的E,这场的BD异常难(B是对于它500的分数难了一点。。),EF异常水。。。

但是写起来很好写,首先判断是不是\(\frac{N(N + 1) }{2}\)的整数倍

假如这个倍数是k,然后每次相当于相邻两个数要么差值是k,要么差值是k - N

,k - 2N,k - 3N....,而且每次用的N的次数总和不超过k

这是必要的,事实上也是充分的,充分性可以拿程序检验,然而不检验也没人管你,毕竟不是数学证明题

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
	if(c == '-') f = -1;
	c = getchar();
    }
    while(c >= '0' && c <= '9') {
	res = res * 10 +c - '0';
	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
int N;
int64 a[MAXN],s;
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) {
    	read(a[i]);
    	s += a[i];
    }
    int64 all = 1LL * N * (N + 1) / 2;
    if(s % all != 0) {puts("NO");return;}
    int64 k = s / all;
    int64 cnt = k;
    for(int i = 2 ; i <= N ; ++i) {
    	if(a[i] - a[i - 1] == k) continue;
    	int64 t = k - (a[i] - a[i - 1]);
    	if(t % N != 0 || t < 0) {puts("NO");return;}
    	cnt -= t / N;
    	if(cnt < 0) {puts("NO");return;}
    }
    puts("YES");
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

C - Cleaning

大意:每次选择两个叶子,路径上每个点-1,问能否变成全0

就是极其简单的树dp,每次在某个点处如果过多了就把两个没有闭合的路径拼在一起就好。。

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
	if(c == '-') f = -1;
	c = getchar();
    }
    while(c >= '0' && c <= '9') {
	res = res * 10 +c - '0';
	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
struct node {
    int to,next;
}E[MAXN * 2];
int N,head[MAXN],sumE,deg[MAXN];
int64 up[MAXN],A[MAXN];
bool flag = 0;
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
void dfs(int u,int fa) {
    if(deg[u] == 1) {up[u] = A[u];return;}
    for(int i = head[u] ; i ; i = E[i].next) {
	int v = E[i].to;
	if(v != fa) {
	    dfs(v,u);
	    if(flag) return;
	}
    }
    int64 md = 0;
    for(int i = head[u] ; i ; i = E[i].next) {
	int v = E[i].to;
	if(v != fa) {
	    md = max(up[v],md);
	    up[u] += up[v];
	}
    }
    if(up[u] == 0 && A[u] == 0) return;
    int64 k = min(up[u] / 2,up[u] - md);
    if(up[u] - k > A[u] || up[u] < A[u]) {flag = 1;return;}
    up[u] = A[u] - (up[u] - A[u]);
}
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(A[i]);
    int a,b;
    for(int i = 1 ; i < N ; ++i) {
	read(a);read(b);
	deg[a]++;deg[b]++;
	add(a,b);add(b,a);
    }
    if(N == 2) {
	if(A[1] == A[2]) puts("YES");
	else puts("NO");
	return;
    }
    int rt = 0;
    for(int i = 1 ; i <= N ; ++i) {
	if(deg[i] > 1) rt = i;
    }
    dfs(rt,0);
    if(flag == 1 || up[rt] != 0) puts("NO");
    else puts("YES");
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

D - Decrementing

大意:有N个互质的数,每次可以选择一个数-1,然后这些数同时除以他们的gcd

如果全是奇数,先手必败,如果111111先手必败,否则先手可以造出一个偶数来,且除过gcd后奇偶性不变,则后手把那个偶数改成奇数即可

如果只有奇数个偶数,先手必胜

如果有偶数个偶数,且奇数至少有两个,那么先手必败

如果有偶数个偶数,奇数有一个,那么先手必须取动那个奇数,模拟到可以判断胜负的时刻即可

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
    }
    while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
int N,A[MAXN];
int gcd(int a,int b) {
    return b == 0 ? a : gcd(b,a % b);
}
int check() {
    int c = 0,t;
    for(int i = 1 ; i <= N ; ++i) {
        if(A[i] & 1) {++c;t = A[i];}
    }
    if((N - c) & 1) return 1;
    if(c >= 2 || t == 1) return 0;
    return -1;
}
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) {
        read(A[i]);
    }
    int cnt = 0;
    while(1) {
        int x = check();
        if(x != -1) {
            if((x ^ cnt) == 1) puts("First");
            else puts("Second");
            return;
        }
        cnt ^= 1;
        int g = 0;
        for(int i = 1 ; i <= N ; ++i) {
            if(A[i] & 1) --A[i];
            g = gcd(g,A[i]);
        }
        for(int i = 1 ; i <= N ; ++i) {
            A[i] /= g;
        }
    }
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

E - Rearranging

大意:有N个数,第一个人可以任意重排,第二个人可以随便交换互质的两个数,第一个人希望字典序最小,第二个人希望字典序最大,问最后的序列

这个就是如果不互质建出一张图,标出层号,起始层号都是0,然后我们从小到大搜索,把这个点相邻的层号都标成这个点的层+1,找层号+1最小的点开始搜(并不一定搜到所有的儿子,因为可能搜完某个儿子后另外的儿子层号已经变了)

然后合并两个序列就是哪个大哪个放前面,类似归并排序

然后最后的序列就是我们想要的

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 2005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
    }
    while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
struct node {
    int to,next;
}E[MAXN * MAXN * 2];
int head[MAXN],sumE,A[MAXN],N;
int dfn[MAXN];
bool vis[MAXN];
vector<int> L;
int gcd(int a,int b) {
    return b == 0 ? a : gcd(b,a % b);
}
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
vector<int> Merge(vector<int> a,vector<int> b) {
    vector<int> c;
    int pa = 0,pb = 0;
    while(pa < a.size() && pb < b.size()) {
        if(a[pa] > b[pb]) c.pb(a[pa++]);
        else c.pb(b[pb++]);
    }
    while(pa < a.size()) c.pb(a[pa++]);
    while(pb < b.size()) c.pb(b[pb++]);
    return c;
}
vector<int> Calc(int u) {
    vector<int> son;
    vis[u] = 1;
    for(int i = head[u] ; i ; i = E[i].next) {
        int v = E[i].to;
        if(!vis[v]) son.pb(v);
    }
    sort(son.begin(),son.end());
    vector<int> tmp;
    for(auto t : son) dfn[t] = dfn[u] + 1;
    for(auto t : son) {
        if(!vis[t] && dfn[t] == dfn[u] + 1) {
            tmp = Merge(tmp,Calc(t));
        }
    }
    tmp.insert(tmp.begin(),A[u]);
    return tmp;
}

void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(A[i]);
    sort(A + 1,A + N + 1);
    for(int i = 1 ; i <= N ; ++i) {
        for(int j = i + 1 ; j <= N ; ++j) {
            if(gcd(A[i],A[j]) != 1) {
                add(i,j);add(j,i);
            }
        }
    }
    for(int i = 1 ; i <= N ; ++i) {
        if(dfn[i] == 0) {
            L = Merge(Calc(i),L);
        }
    }
    for(auto t : L) {
        out(t);space;
    }
    enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

F - Tree Game

大意:有一棵树,树上每个点有石头,树上某个点有一个标记,每次可以扔掉有标记的点上的一块石头,然后挪到相邻点,如果某个人操作时这个标记没有石头,那么不合法

显然如果是个菊花,如果有个儿子的石头数小于根,那么先手放在根就赢了

对于一般的情况,我们dp,对于一个根,如果他的儿子是先手必胜,那么不能移动到那个儿子,我们就是在先手必败的儿子中找有没小于根节点的石头值的点,如果有的话以这个点为根就是先手必胜

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 3005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
	if(c == '-') f = -1;
	c = getchar();
    }
    while(c >= '0' && c <= '9') {
	res = res * 10 +c - '0';
	c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
	out(x / 10);
    }
    putchar('0' + x % 10);
}
struct node {
    int to,next;
}E[MAXN * 2];
int N,head[MAXN],sumE;
int64 A[MAXN],rem[MAXN];
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
bool dfs(int u,int fa) {
    int64 s = 0;
    for(int i = head[u] ; i ; i = E[i].next) {
	int v = E[i].to;
	if(v != fa) {
	    if(!dfs(v,u)) {
		if(A[u] > A[v]) return true;
	    }
	}
    }
    return false;
    
}
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(A[i]);
    int a,b;
    for(int i = 1 ; i < N ; ++i) {
	read(a);read(b);
	add(a,b);add(b,a);
    }
    int ans = 0;
    for(int i = 1 ; i <= N ; ++i) {
	if(dfs(i,0)) {out(i);space;}
    }
    enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}
posted @ 2019-05-10 15:16  sigongzi  阅读(188)  评论(0编辑  收藏  举报