mapreduce 二次排序

1 二次排序

1.1 思路

所谓二次排序,对第1个字段相同的数据,使用第2个字段进行排序。
举个例子,电商平台记录了每一用户的每一笔订单的订单金额,现在要求属于同一个用户的所有订单金额作排序,并且输出的用户名也要排序。

账户 订单金额
hadoop@apache 200
hive@apache 550
yarn@apache 580
hive@apache 159
hadoop@apache 300
hive@apache 258
hadoop@apache 300
yarn@apache 100
hadoop@apache 150
yarn@apache 560
yarn@apache 260

二次排序后的结果

账户 订单金额
hadoop@apache 150
hadoop@apache 200
hadoop@apache 300
hadoop@apache 300
hive@apache 159
hive@apache 258
hive@apache 550
yarn@apache 100
yarn@apache 260
yarn@apache 560
yarn@apache 580

实现的思路是使用自定义key,key中实现按用户名和订单金额2个字段的排序,自定义分区和分组类,按用户名进行分区和分组。自定义排序的比较器,分别用于在map端和reduce的合并排序。

因为hadoop默认使用的字符串序列化java.io.DataOutputStream.writeUTF(), 使用了"变种的UTF编码",序列化后的字节流不能在RawComparator使用。
在实现中,用一种变通的方法,直接使用“账户”字段的字节流,并且把字节流长度也一并序列化。RawComparator得到的字节流就是我们写进去的字节流。当然,在进行反序列化时,需要根据这个长度来读出“账户”字段。

1.2 实现

程序代码

package com.hadoop;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.nio.charset.Charset;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.security.UserGroupInformation;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class SecondarySortMapReduce extends Configured implements Tool {

	/**
	 * 消费信息
	 * @author Ivan
	 *
	 */
	public static class CostBean implements WritableComparable<CostBean> {
		private String account;
		private double cost;
		
		public void set(String account, double cost) {
			this.account = account;
			this.cost = cost;
		}
		
		public String getAccount() {
			return account;
		}
		
		public double getCost() {
			return cost;
		}
		
		@Override
		public void write(DataOutput out) throws IOException {
			byte[] buffer = account.getBytes(Charset.forName("UTF-8"));
			
			out.writeInt(buffer.length);				// 账户的字节流长度. out.writeUTF()使用的编码方式很复杂,需要使用DataInput.readUTF()来解码,这里不这么用
			out.write(buffer);
			out.writeDouble(cost);
		}

		@Override
		public void readFields(DataInput in) throws IOException {
			int accountLength = in.readInt();
			byte[] bytes = new byte[accountLength];
			in.readFully(bytes);
			
			account = new String(bytes);		
			cost = in.readDouble();
		}

		@Override
		public int compareTo(CostBean o) {
			if (account.equals(o.account)) {		//账户相等, 接下来比较消费金额 
				return cost == o.cost ? 0 : (cost > o.cost ? 1 : -1);
			}
			
			return account.compareTo(o.account);
		}
		
		@Override
		public String toString() {
			return account + "\t" + cost;
		}
	}
	
	/**
	 * 用于map端和reduce端排序的比较器:如果账户相同,则比较金额
	 * @author Ivan
	 *
	 */
	public static class CostBeanComparator extends WritableComparator {
		@Override
		public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
			int accountLength1 = readInt(b1, s1);  
			int accountLength2 = readInt(b2, s2);
			
			int result = compareBytes(b1, s1 + 4, accountLength1, b2, s2 + 4, accountLength2);
			if (result == 0) {	// 账户相同,则比较金额 
				double thisValue = readDouble(b1, s1 + 4 + accountLength1);
				double thatValue = readDouble(b2, s2 + 4 + accountLength2);
			    return (thisValue < thatValue ? -1 : (thisValue == thatValue ? 0 : 1));
			} else {			
				return result;
			}
		}
	}
	
	/**
	 * 用于map端在写磁盘使用的分区器
	 * @author Ivan
	 *
	 */
	public static class CostBeanPatitioner extends Partitioner<CostBean, DoubleWritable> {
		
		/**
		 * 根据 account分区
		 */
		@Override
		public int getPartition(CostBean key, DoubleWritable value, int numPartitions) {
			return key.account.hashCode() % numPartitions;
		}
	}
	
	/**
	 * 用于在reduce端分组的比较器根据account字段分组,即相同account的作为一组
	 * @author Ivan
	 *
	 */
	public static class GroupComparator extends WritableComparator {
		@Override
		public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
			int accountLength1 = readInt(b1, s1);  
			int accountLength2 = readInt(b2, s2);
			
			byte[] tmpb1 = new byte[accountLength1];
			byte[] tmpb2 = new byte[accountLength2];
			System.arraycopy(b1, s1 + 4, tmpb1, 0, accountLength1);
			System.arraycopy(b2, s2 + 4, tmpb2, 0, accountLength2);
			
			String account1 = new String(tmpb1, Charset.forName("UTF-8"));
			String account2 = new String(tmpb1, Charset.forName("UTF-8"));
			
			System.out.println("grouping: accout1=" + account1 + ", accout2=" + account2);
			
			return compareBytes(b1, s1 + 4, accountLength1, b2, s2 + 4, accountLength2);
		}
	}
	
	/**
	 * Mapper类
	 * @author Ivan
	 *
	 */
	public static class SecondarySortMapper extends Mapper<LongWritable, Text, CostBean, DoubleWritable> {
		private final CostBean outputKey = new CostBean();
		private final DoubleWritable outputValue = new DoubleWritable();
		
		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			String[] data = value.toString().split("\t");
			
			double cost = Double.parseDouble(data[1]);
			outputKey.set(data[0].trim(), cost);
			outputValue.set(cost);			

			context.write(outputKey, outputValue);
		}
	}
	
	public static class SecondarySortReducer extends Reducer<CostBean, DoubleWritable, Text, DoubleWritable> {
		private final Text outputKey = new Text();
		private final DoubleWritable outputValue = new DoubleWritable();
		@Override
		protected void reduce(CostBean key, Iterable<DoubleWritable> values,Context context)
				throws IOException, InterruptedException {
			outputKey.set(key.getAccount());
			
			for (DoubleWritable v : values) {
				outputValue.set(v.get());
				context.write(outputKey, outputValue);
			}
		}
	}
	
	public int run(String[] args) throws Exception {
		Configuration conf = getConf();
		Job job = Job.getInstance(conf, SecondarySortMapReduce.class.getSimpleName());
		job.setJarByClass(SecondarySortMapReduce.class);
		
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// map settings
		job.setMapperClass(SecondarySortMapper.class);
		job.setMapOutputKeyClass(CostBean.class);
		job.setMapOutputValueClass(DoubleWritable.class);
		
		// partition settings
		job.setPartitionerClass(CostBeanPatitioner.class);
		
		// sorting		
		job.setSortComparatorClass(CostBeanComparator.class);
		
		// grouping
		
		job.setGroupingComparatorClass(GroupComparator.class);
		
		// reduce settings
		job.setReducerClass(SecondarySortReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputKeyClass(DoubleWritable.class);
		
		boolean res = job.waitForCompletion(true);
		
		return res ? 0 : 1;
	}
	
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		if (args.length < 2) {
			throw new IllegalArgumentException("Usage: <inpath> <outpath>");
		}
		
		ToolRunner.run(new Configuration(), new SecondarySortMapReduce(), args);
	}
}

1.3 测试

运行环境
  • 操作系统: Centos 6.4
  • Hadoop: Apache Hadoop-2.5.0

拿上面的例子作为测试数据

账户 金额
hadoop@apache 200
hive@apache 550
yarn@apache 580
hive@apache 159
hadoop@apache 300
hive@apache 258
hadoop@apache 300
yarn@apache 100
hadoop@apache 150
yarn@apache 560
yarn@apache 260

posted @ 2016-07-22 17:40  Ivan.Jiang  阅读(1671)  评论(0编辑  收藏  举报