多分类与多标签分类评价指标

单标签评价指标

import matplotlib.pyplot as plt
import numpy as np

def F1(P,R):
    return 2*P*R/(P+R)

def ROC(pos,neg):
    TPR = []
    FPR = []
    for i in np.arange(0.05,1,0.05):
        if i == 0.8:
            print(1)
        TP = 0
        FP = 0
        TN = 0
        FN = 0
        for item in pos:
            if item >=i: #预测为正
                TP +=1
            else: #预测为负
                FN +=1
        for item in neg:
            if item <i: #预测为负
                TN +=1
            else: #预测为正
                FP +=1
        TPR.append(TP/(TP+FN))
        FPR.append(FP/(FP+TN))
    plt.xlabel("FPR", fontsize=12)
    plt.ylabel("TPR", fontsize=12)
    plt.plot(FPR,TPR)
    plt.show()

def AUC(pos,neg):
    pos = sorted(pos)
    neg = sorted(neg)
    count = 0
    for pos1 in pos:
        for neg1 in neg:
            if pos1>neg1:
                count += 1
            elif pos1==neg1:
                count+=0.5
            else:
                break
    return count/(len(pos) *len(neg))
View Code

多标签评价指标

#多标签评价指标
import numpy as np

#汉明损失
# 错误率:sum(sum(y != yhat)) / (N*D)
# 1.每个样本的错误率 2.对所有样本错误率平均
#from sklearn.metrics import hamming_loss
def HammingLoss(label, predict):
    # label: (N, D)
    D = len(label[0])
    N = len(label)
    tmp = 0
    for i in range(N):
        tmp = tmp + np.sum(label[i] ^ predict[i])
    hamming_loss = tmp / N / D
    return hamming_loss

#覆盖率
#覆盖所有true标签的最大序号(降序)的均值
#1.降序序号 2.True标签对应序号 3.求序号最大值
def Coverage(label, logit):
    N = len(label)
    label_index = []
    for i in range(N):
        index = np.where(label[i] == 1)[0]
        label_index.append(index)
    cover = 0
    for i in range(N):
        # 从大到小排序
        index = np.argsort(-logit[i]).tolist()
        tmp = 0
        for item in label_index[i]:
            tmp = max(tmp, index.index(item) + 1)
        cover += tmp
    coverage = cover * 1.0 / N
    return coverage

# 1-错误率
# 概率最大标签错误率
def One_error(label, logit):
    N = len(label)
    for i in range(N):
        if max(label[i]) == 0:
            print("该条数据哪一类都不是")
    label_index = []
    for i in range(N):
        index = np.where(label[i] == 1)[0]
        label_index.append(index)
    OneError = 0
    for i in range(N):
        if np.argmax(logit[i]) not in label_index[i]:
            OneError += 1
    OneError = OneError * 1.0 / N
    return OneError


#平均精确率
#1.计算每个样本所有标签实际排名与预测排名比值的均值 2.对整个数据集合平均
def Average_Precision(label, logit):
    N = len(label)
    for i in range(N):
        if max(label[i]) == 0 or min(label[i]) == 1:
            print("该条数据哪一类都不是或者全都是")
    precision = 0
    for i in range(N):
        index = np.where(label[i] == 1)[0]
        score = logit[i][index]
        score = sorted(score)
        score_all = sorted(logit[i])
        precision_tmp = 0
        for item in score:
            tmp1 = score.index(item)
            tmp1 = len(score) - tmp1
            tmp2 = score_all.index(item)
            tmp2 = len(score_all) - tmp2
            precision_tmp += tmp1 / tmp2
        precision += precision_tmp / len(score)
    Average_Precision = precision / N
    return Average_Precision

#排序损失#
# 1.计算每个样本False标签预测值大于True标签预测值的比重(偏离程度) 2.对整个样本集平均
def RankingLoss(label, logit):
    N = len(label)
    for i in range(N):
        if max(label[i]) == 0 or min(label[i]) == 1:
            print("该条数据哪一类都不是或者全都是")
    rankloss = 0
    for i in range(N):
        index1 = np.where(label[i] == 1)[0]
        index0 = np.where(label[i] == 0)[0]
        tmp = 0
        for j in index1:
            for k in index0:
                if logit[i][j] <= logit[i][k]:
                    tmp += 1
        rankloss += tmp * 1.0 / ((len(index1)) * len(index0))
    rankloss = rankloss / N
    return rankloss

#杰卡德系数 jaccard similarity
#交并比
#from sklearn.metrics import jaccard_similarity_score


logit = np.array([[0.3, 0.4, 0.5, 0.1, 0.15]])
label = np.array([[1, 0, 1, 0, 0]])
pred = np.array([[0, 1, 1, 0, 0]])

print(HammingLoss(label, pred))

 

  

posted on 2021-03-25 22:05  iUpoint  阅读(416)  评论(0编辑  收藏  举报

导航