摘要: 目录 梯度消失 梯度爆炸 参考资料 以下图的全连接神经网络为例,来演示梯度爆炸和梯度消失: 梯度消失 在模型参数w都是(-1,1)之间的数的前提下,如果激活函数选择的是sigmod(x),那么他的导函数σ’(x)的值域为(0,0.25],即如下三项的范围都是(0,0.25] 那么w1的导数会有很多( 阅读全文
posted @ 2019-07-08 20:37 黎明程序员 阅读(1913) 评论(0) 推荐(0) 编辑
摘要: 目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点。 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是 阅读全文
posted @ 2019-07-08 19:12 黎明程序员 阅读(1795) 评论(0) 推荐(0) 编辑