深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)

目录

  一维Full卷积

  一维Same卷积

  一维Valid卷积

  三种卷积类型的关系

  具备深度的一维卷积

  具备深度的张量与多个卷积核的卷积

  参考资料


一维卷积通常有三种类型:full卷积、same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程

 

 

一维Full卷积

Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下:

将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的full卷积结果,其中K卷积核或者滤波器或者卷积掩码,卷积符号用符号★表示,记Cfull=I★K

 返回目录

 

一维Same卷积

 

卷积核K都有一个锚点,然后将锚点顺序移动到张量I的每一个位置处,对应位置相乘再求和,计算过程如下:

 

假设卷积核的长度为FL,如果FL为奇数,锚点位置在(FL-1)/2处;如果FL为偶数,锚点位置在(FL-2)/2处。

 返回目录

 

一维Valid卷积

 从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑I能完全覆盖K的情况,即K在I的内部移动的情况,计算过程如下:

 

 

 返回目录

 

三种卷积类型的关系

 

 返回目录

 

具备深度的一维卷积

比如x是一个长度为3,深度为3的张量,其same卷积过程如下,卷积核K的锚点在张量x范围内依次移动,输入张量的深度和卷积核的深度是相等的。

 返回目录

 

具备深度的张量与多个卷积核的卷积

上面介绍了一个张量和一个卷积核进行卷积。他们的深度相等才能进行卷积,下面介绍一个张量与多个卷积核的卷积。同一个张量与多个卷积核的卷积本质上是该张量分别与每一个卷积核卷积,然后将每一个卷积结果在深度方向上连接起来。

 

举例:以长度为3、深度为3的输入张量与2个长度为2、深度为3的卷积核卷积为例,过程如下:

 返回目录

 

参考资料

 《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

 返回目录

posted @ 2019-07-12 17:46  黎明程序员  阅读(22376)  评论(3编辑  收藏  举报