Hive SQL语句的正确执行顺序

上面这个执行顺序到底对不对呢,我们可以通过 explain 执行计划来看下,内容过多,我们分阶段来看。

  1. 首先看下 sql 语句的执行依赖:

我们看到 Stage-5 是根,也就是最先执行 Stage-5,Stage-2 依赖 Stage-5,Stage-0 依赖 Stage-2。

  1. 首先执行 Stage-5:

图中标 ① 处是表扫描操作,注意先扫描的 b 表,也就是 left join 后面的表,然后进行过滤操作(图中标 ② 处),我们 sql 语句中是对 a 表进行的过滤,但是 Hive 也会自动对 b 表进行相同的过滤操作,这样可以减少关联的数据量。

  1. 接下来执行 Stage-2:
  • 首先是 Map 端操作:

先扫描 a 表(图中标 ① 处);接下来进行过滤操作 idno > '112233'(图中标 ② 处);然后进行 left join,关联的 key 是 idno(图中标 ③ 处);执行完关联操作之后会进行输出操作,输出的是三个字段,包括 select 的两个字段加 group by 的一个字段(图中标 ④ 处);然后进行 group by 操作,分组方式是 hash(图中标 ⑤ 处);然后进行排序操作,按照 idno 进行正向排序(图中标 ⑥ 处)。

  • 然后是 Reduce 端操作:

首先进行 group by 操作,注意此时的分组方式是 mergepartial 合并分组(图中标 ① 处);然后进行 select 操作,此时输出的字段只有两个了,输出的行数是 30304 行(图中标 ② 处);接下来执行 having 的过滤操作,过滤出 count_user>1 的字段,输出的行数是 10101 行(图中标 ③ 处);然后进行 limit 限制输出的行数(图中标 ④ 处);图中标 ⑤ 处表示是否对文件压缩,false 不压缩。

执行计划中的数据量只是预测的数据量,不是真实运行的,所以数据可能不准!

  1. 最后是 Stage-0 阶段:

限制最终输出的行数为 10 行。

总结

通过上面对 SQL 执行计划的分析,总结以下几点:

  1. 每个 stage 都是一个独立的 MR,复杂的 hive sql 语句可以产生多个 stage,可以通过执行计划的描述,看看具体步骤是什么。

  2. 对于 group by 的 key,必须是表中的字段,对于 having 的 key,必须是 select 的字段。

  3. order by 是在 select 后执行的,所以 order by 的 key 必须是 select 的字段。

  4. select 最好指明字段,select * 会增加很多不必要的消耗(CPU、IO、内存、网络带宽)。

posted @ 2021-08-02 09:55  五分钟学大数据  阅读(2290)  评论(0编辑  收藏  举报