for和range的性能比较

1 range 的简单回顾

Go 语言中,range 可以用来很方便地遍历数组(array)、切片(slice)、字典(map)和信道(chan)

1.1 array/slice

1
2
3
4
5
words := []string{"Go", "语言", "高性能", "编程"}
for i, s := range words {
words = append(words, "test")
fmt.Println(i, s)
}

输出结果如下:

1
2
3
4
0 Go
1 语言
2 高性能
3 编程
  • 变量 words 在循环开始前,仅会计算一次,如果在循环中修改切片的长度不会改变本次循环的次数。
  • 迭代过程中,每次迭代的下标和值被赋值给变量 i 和 s,第二个参数 s 是可选的。
  • 针对 nil 切片,迭代次数为 0。

range 还有另一种只遍历下标的写法,这种写法与 for 几乎没什么差异了。

1
2
3
for i := range words {
fmt.Println(i, words[i])
}

输出也是一样的:

1
2
3
4
0 Go
1 语言
2 高性能
3 编程

1.2 map

1
2
3
4
5
6
7
8
9
10
m := map[string]int{
"one": 1,
"two": 2,
"three": 3,
}
for k, v := range m {
delete(m, "two")
m["four"] = 4
fmt.Printf("%v: %v\n", k, v)
}

输出结果为:

1
2
3
one: 1
four: 4
three: 3
  • 和切片不同的是,迭代过程中,删除还未迭代到的键值对,则该键值对不会被迭代。
  • 在迭代过程中,如果创建新的键值对,那么新增键值对,可能被迭代,也可能不会被迭代。
  • 针对 nil 字典,迭代次数为 0

1.3 channel

1
2
3
4
5
6
7
8
9
10
11
ch := make(chan string)
go func() {
ch <- "Go"
ch <- "语言"
ch <- "高性能"
ch <- "编程"
close(ch)
}()
for n := range ch {
fmt.Println(n)
}
  • 发送给信道(channel) 的值可以使用 for 循环迭代,直到信道被关闭。
  • 如果是 nil 信道,循环将永远阻塞。

2 for 和 range 的性能比较

2.1 []int

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
func generateWithCap(n int) []int {
rand.Seed(time.Now().UnixNano())
nums := make([]int, 0, n)
for i := 0; i < n; i++ {
nums = append(nums, rand.Int())
}
return nums
}

func BenchmarkForIntSlice(b *testing.B) {
nums := generateWithCap(1024 * 1024)
for i := 0; i < b.N; i++ {
len := len(nums)
var tmp int
for k := 0; k < len; k++ {
tmp = nums[k]
}
_ = tmp
}
}

func BenchmarkRangeIntSlice(b *testing.B) {
nums := generateWithCap(1024 * 1024)
for i := 0; i < b.N; i++ {
var tmp int
for _, num := range nums {
tmp = num
}
_ = tmp
}
}

运行结果如下:

1
2
3
4
5
6
$ go test -bench=IntSlice$ .
goos: darwin
goarch: amd64
pkg: example/hpg-range
BenchmarkForIntSlice-8 3603 324512 ns/op
BenchmarkRangeIntSlice-8 3591 322744 ns/op
  • generateWithCap 用于生成长度为 n 元素类型为 int 的切片。
  • 从最终的结果可以看到,遍历 []int 类型的切片,for 与 range 性能几乎没有区别。

2.2 []struct

那如果是稍微复杂一点的 []struct 类型呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
type Item struct {
id int
val [4096]byte
}

func BenchmarkForStruct(b *testing.B) {
var items [1024]Item
for i := 0; i < b.N; i++ {
length := len(items)
var tmp int
for k := 0; k < length; k++ {
tmp = items[k].id
}
_ = tmp
}
}

func BenchmarkRangeIndexStruct(b *testing.B) {
var items [1024]Item
for i := 0; i < b.N; i++ {
var tmp int
for k := range items {
tmp = items[k].id
}
_ = tmp
}
}

func BenchmarkRangeStruct(b *testing.B) {
var items [1024]Item
for i := 0; i < b.N; i++ {
var tmp int
for _, item := range items {
tmp = item.id
}
_ = tmp
}
}

先看下 Benchmark 的结果:

1
2
3
4
5
6
7
$ go test -bench=Struct$ .
goos: darwin
goarch: amd64
pkg: example/hpg-range
BenchmarkForStruct-8 3769580 324 ns/op
BenchmarkRangeIndexStruct-8 3597555 330 ns/op
BenchmarkRangeStruct-8 2194 467411 ns/op
  • 仅遍历下标的情况下,for 和 range 的性能几乎是一样的。
  • items 的每一个元素的类型是一个结构体类型 ItemItem 由两个字段构成,一个类型是 int,一个是类型是 [4096]byte,也就是说每个 Item 实例需要申请约 4KB 的内存。
  • 在这个例子中,for 的性能大约是 range (同时遍历下标和值) 的 2000 倍。

2.3 []int 和 []struct{} 的性能差异

与 for 不同的是,range 对每个迭代值都创建了一个拷贝。因此如果每次迭代的值内存占用很小的情况下,for 和 range 的性能几乎没有差异,但是如果每个迭代值内存占用很大,例如上面的例子中,每个结构体需要占据 4KB 的内存,这种情况下差距就非常明显了。

我们可以用一个非常简单的例子来证明 range 迭代时,返回的是拷贝。

1
2
3
4
5
6
7
8
persons := []struct{ no int }{{no: 1}, {no: 2}, {no: 3}}
for _, s := range persons {
s.no += 10
}
for i := 0; i < len(persons); i++ {
persons[i].no += 100
}
fmt.Println(persons) // [{101} {102} {103}]
  • persons 是一个长度为 3 的切片,每个元素是一个结构体。
  • 使用 range 迭代时,试图将每个结构体的 no 字段增加 10,但修改无效,因为 range 返回的是拷贝。
  • 使用 for 迭代时,将每个结构体的 no 字段增加 100,修改有效。

2.4 []*struct{}

那如果切片中是指针,而不是结构体呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func generateItems(n int) []*Item {
items := make([]*Item, 0, n)
for i := 0; i < n; i++ {
items = append(items, &Item{id: i})
}
return items
}

func BenchmarkForPointer(b *testing.B) {
items := generateItems(1024)
for i := 0; i < b.N; i++ {
length := len(items)
var tmp int
for k := 0; k < length; k++ {
tmp = items[k].id
}
_ = tmp
}
}

func BenchmarkRangePointer(b *testing.B) {
items := generateItems(1024)
for i := 0; i < b.N; i++ {
var tmp int
for _, item := range items {
tmp = item.id
}
_ = tmp
}
}

运行结果如下:

1
2
3
4
5
goos: darwin
goarch: amd64
pkg: example/hpg-range
BenchmarkForPointer-8 271279 4160 ns/op
BenchmarkRangePointer-8 264068 4194 ns/op

切片元素从结构体 Item 替换为指针 *Item 后,for 和 range 的性能几乎是一样的。而且使用指针还有另一个好处,可以直接修改指针对应的结构体的值。

3 总结

range 在迭代过程中返回的是迭代值的拷贝,如果每次迭代的元素的内存占用很低,那么 for 和 range 的性能几乎是一样,例如 []int。但是如果迭代的元素内存占用较高,例如一个包含很多属性的 struct 结构体,那么 for 的性能将显著地高于 range,有时候甚至会有上千倍的性能差异。对于这种场景,建议使用 for,如果使用 range,建议只迭代下标,通过下标访问迭代值,这种使用方式和 for 就没有区别了。如果想使用 range 同时迭代下标和值,则需要将切片/数组的元素改为指针,才能不影响性能。

posted @ 2021-02-02 14:58  hubb  阅读(403)  评论(0编辑  收藏  举报