python语法32[装饰器decorator]
一 装饰器decorator
decorator设计模式允许动态地对现有的对象或函数包装以至于修改现有的职责和行为,简单地讲用来动态地扩展现有的功能。其实也就是其他语言中的AOP的概念,将对象或函数的真正功能也其他辅助的功能的分离。
二Python中的decorator
python中的decorator通常为输入一个函数,经过装饰后返回另一个函数。 比较常用的功能一般使用decorator来实现,例如python自带的staticmethod和classmethod。
装饰器有两种形式:
@A
def foo():
pass
def foo():
pass
相当于:
def foo():
pass
foo = A(foo)
pass
foo = A(foo)
第二种为带参数的:
@A(arg)
def foo():
pass
def foo():
pass
则相当于:
def foo():
pass
foo = A(arg)(foo)
pass
foo = A(arg)(foo)
可以看出第一种的装饰器是个返回函数的函数,第二种的装饰器是个返回函数的函数的函数。
python中的decorator可以多个同时使用,如下:
@A
@B
@C
def f (): pass
# it is same as below
def f(): pass
f = A(B(C(f)))
@B
@C
def f (): pass
# it is same as below
def f(): pass
f = A(B(C(f)))
三 Python中常用的decorator实例
decorator通常用来在执行前进行权限认证,日志记录,甚至修改传入参数,或者在执行后对返回结果进行预处理,甚至可以截断函数的执行等等。
实例1:
from functools import wraps
def logged(func):
@wraps(func)
def with_logging(*args, **kwargs):
print (func.__name__() + " was called")
return func(*args, **kwargs)
return with_logging
@logged
def f(x):
"""does some math"""
return x + x * x
print (f.__name__) # prints 'f'
print (f.__doc__) # prints 'does some math'
def logged(func):
@wraps(func)
def with_logging(*args, **kwargs):
print (func.__name__() + " was called")
return func(*args, **kwargs)
return with_logging
@logged
def f(x):
"""does some math"""
return x + x * x
print (f.__name__) # prints 'f'
print (f.__doc__) # prints 'does some math'
注意functools.wraps()函数的作用:调用经过装饰的函数,相当于调用一个新函数,那查看函数参数,注释,甚至函数名的时候,就只能看到装饰器的相关信息,被包装函数的信息被丢掉了。而wraps则可以帮你转移这些信息,参见http://stackoverflow.com/questions/308999/what-does-functools-wraps-do
参考:
http://www.cnblogs.com/Lifehacker/archive/2011/12/20/3_useful_python_decorator.html#2277951
完!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
2010-12-31 python类库31[进程subprocess]
2010-12-31 python类库31[命令行解析]