Spark RDD中的aggregate函数
转载自:http://blog.csdn.net/qingyang0320/article/details/51603243
针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考。
首先,Spark文档中aggregate函数定义如下
def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U
Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation. seqOp操作会聚合各分区中的元素,然后combOp操作把所有分区的聚合结果再次聚合,两个操作的初始值都是zeroValue. seqOp的操作是遍历分区中的所有元素(T),第一个T跟zeroValue做操作,结果再作为与第二个T做操作的zeroValue,直到遍历完整个分区。combOp操作是把各分区聚合的结果,再聚合。aggregate函数返回一个跟RDD不同类型的值。因此,需要一个操作seqOp来把分区中的元素T合并成一个U,另外一个操作combOp把所有U聚合。
- zeroValue
-
the initial value for the accumulated result of each partition for the
seqOp
operator, and also the initial value for the combine results from different partitions for thecombOp
operator - this will typically be the neutral element (e.g.Nil
for list concatenation or0
for summation) - seqOp
-
an operator used to accumulate results within a partition
- combOp
-
an associative operator used to combine results from different partitions
举个例子。假如List(1,2,3,4,5,6,7,8,9,10),对List求平均数,使用aggregate可以这样操作。
C:\Windows\System32>scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) Client VM, Java 1.8.0_91).
Type in expressions for evaluation. Or try :help.
scala> val rdd = List(1,2,3,4,5,6,7,8,9)
rdd: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> rdd.par.aggregate((0,0))(
(acc,number) => (acc._1 + number, acc._2 + 1),
(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)
)
res0: (Int, Int) = (45,9)
scala> res0._1 / res0._2
res1: Int = 5
过程大概这样:
首先,初始值是(0,0),这个值在后面2步会用到。
然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。
1. 0+1, 0+1
2. 1+2, 1+1
3. 3+3, 2+1
4. 6+4, 3+1
5. 10+5, 4+1
6. 15+6, 5+1
7. 21+7, 6+1
8. 28+8, 7+1
9. 36+9, 8+1
结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了