概率贝叶斯学习笔记
本篇文章 其实大部分都是摘抄书本的
主要是针对公式 代入数据计算 了解如何使用式子去解决一些问题
很简单的例子 但是希望能提供一些感性认识
概率推理是以贝叶斯为基础,对事件进行反向推导。
A事件表示草坪为湿 B事件表示昨天下雨
p(A) p(B)表示事件A B发生的概率
P(A∩B) 表示 事件A 和 事件B 同时发生的概率
P(A|B)表示事件B已发生情况下事件A发生的概率
P(A|~B)表示事件B没发生情况下事件A发生的概率
P(B|A)表示事件A已发生情况下事件B发生的概率
P(B|~A)表示事件A没发生情况下事件B发生的概率
同时
P(A) = P(A|B)P(B)+P(A|~B)P(~B) 式1.1
P(A∩B) = P(A|B)P(B) = P(B|A)P(A) 式1.2
那么 P(A|B) = P(B|A)P(A)/P(B) 式1.3
而P(B) = P(B|A)P(A)+P(B|~A)P(~A) 式1.4(类似 式1.1)
式1.3 式1.4经常用于推导事件发生概率
T表示trap 陷阱的概率
L表示lock 锁住的概率
那么我们需要直到 锁住的情况下箱子有陷阱的概率是?
由式1.3列出以下式子
P(T|L) = P(L|T)P(T) / P(L)
但是式子中P(L)我们也不知道
由式1.4列出以下式子
P(L) = P(L|T)P(T) + p(L|~T)P(~T)
p(L) = 0.78*0.37 +0.29*0.63 = 0.4713
那么 P(T|L) = P(L|T)P(T) / P(L) = 0.78*0.37 / 0.4713 = 0.612
贝叶斯可以用来推断 病人确认为检测阳性 实际患病的可能
用来根据指定字符的出现频率 判断邮件是否是垃圾邮件的概率
图片及文字资料来自 《游戏编程中的人工智能》 《离散数学及应用(第6版)》 《游戏开发中的人工智能》《人工智能游戏编程真言》
欢迎转帖 请保持文本完整并注明出处
技术博客 http://www.cnblogs.com/itdef/
B站算法视频题解
https://space.bilibili.com/18508846
qq 151435887
gitee https://gitee.com/def/
欢迎c c++ 算法爱好者 windows驱动爱好者 服务器程序员沟通交流
如果觉得不错,欢迎点赞,你的鼓励就是我的动力