AcWing 1128. 信使 单源最短路

地址 https://www.acwing.com/problem/content/description/1130/

战争时期,前线有 n 个哨所,每个哨所可能会与其他若干个哨所之间有通信联系。

信使负责在哨所之间传递信息,当然,这是要花费一定时间的(以天为单位)。

指挥部设在第一个哨所。

当指挥部下达一个命令后,指挥部就派出若干个信使向与指挥部相连的哨所送信。

当一个哨所接到信后,这个哨所内的信使们也以同样的方式向其他哨所送信。信在一个哨所内停留的时间可以忽略不计。

直至所有 n 个哨所全部接到命令后,送信才算成功。

因为准备充足,每个哨所内都安排了足够的信使(如果一个哨所与其他 k 个哨所有通信联系的话,这个哨所内至少会配备 k 个信使)。

现在总指挥请你编一个程序,计算出完成整个送信过程最短需要多少时间。

输入格式
第 1 行有两个整数 n 和 m,中间用 1 个空格隔开,分别表示有 n 个哨所和 m 条通信线路。

第 2 至 m+1 行:每行三个整数 i、j、k,中间用 1 个空格隔开,表示第 i 个和第 j 个哨所之间存在 双向 通信线路,且这条线路要花费 k 天。

输出格式
一个整数,表示完成整个送信过程的最短时间。

如果不是所有的哨所都能收到信,就输出-1。

数据范围
1≤n≤100,
1≤m≤200,
1≤k≤1000
输入样例:
4 4
1 2 4
2 3 7
2 4 1
3 4 6
输出样例:
11

算法1
单源最短路模板

C++ 代码

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 300;

int g[N][N];
bool st[N];
int dist[N];
int n, m;

void dij()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n; i++) {
        int t = -1;
        for (int j = 1; j <= n; j++) {
            if (!st[j] && (t == -1 || dist[t] > dist[j])) {
                t = j;
            }
        }
        st[t] = true;

        for (int j = 1; j <= n; j++) {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }

    return;
}

int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof g);
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = (c);
        g[b][a] = (c);
    }

    dij();
    int ans = -1;
    for (int i = 1; i <= n; i++) {
        ans = max(dist[i], ans);
    }
    if (ans == 0x3f3f3f3f) ans = -1;
    cout << ans << endl;
    return 0;
}

 

posted on 2020-07-03 22:44  itdef  阅读(198)  评论(0编辑  收藏  举报

导航