Checkpoint的运行原理和源码实现

引言

Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题:

  1. Spark 在生产环境下经常会面临 Transformation 的 RDD 非常多(例如一个Job 中包含1万个RDD) 或者是具体的 Transformation 产生的 RDD 本身计算特别复杂和耗时(例如计算时常超过1个小时) , 可能业务比较复杂,此时我们必需考虑对计算结果的持久化。
  2. Spark 是擅长多步骤迭代,同时擅长基于 Job 的复用。这个时候如果可以对计算的过程进行复用,就可以极大的提升效率。因为有时候有共同的步骤,就可以免却重复计算的时间。
  3. 如果采用 persists 把数据在内存中的话,虽然最快速但是也是最不可靠的;如果放在磁盘上也不是完全可靠的,例如磁盘会损坏,系统管理员可能会清空磁盘。
  4. Checkpoint 的产生就是为了相对而言更加可靠的持久化数据,在 Checkpoint 可以指定把数据放在本地并且是多副本的方式,但是在正常生产环境下放在 HDFS 上,这就天然的借助HDFS 高可靠的特征来完成最大化的可靠的持久化数据的方式
  5. Checkpoint 是为了最大程度保证绝对可靠的复用 RDD 计算数据的 Spark 的高级功能,通过 Checkpoint 我们通过把数据持久化到 HDFS 上来保证数据的最大程度的安任性
  6. Checkpoint 就是针对整个RDD 计算链条中特别需要数据持久化的环节(后面会反覆使用当前环节的RDD) 开始基于HDFS 等的数据持久化复用策略,通过对 RDD 启动 Checkpoint 机制来实现容错和高可用

Checkpoint 运行原理图

Checkpoint 源码解析 

1、RDD.iterator 方法,它会先在缓存中查看数据 (内部会查看 Checkpoint 有没有相关数据),然后再从 CheckPoint 中查看数据

Checkpoint 有两种方法,一种是 reliably 和 一种是 locally
[下图是 RDD.scala 中的 isCheckpointed 变量和 isCheckpointedAndMaterialized 方法]

2、通过调用 SparkContext.setCheckpointDir 方法来指定进行 Checkpoint 操作的 RDD 把数据放在那里,在生产集群中是放在 HDFS 上的,同时为了提高效率在进行 Checkpoint 的时候可以指定很多目录

3、在进行 RDD 的 Checkpoint 的时候,其所依赖的所有 RDD 都会清空掉;官方建议如果要进行 checkpoint 时,必需先缓存在内存中。但实际可以考虑缓存在本地磁盘上或者是第三方组件,e.g. Taychon 上。在进行 checkpoint 之前需要通过 SparkConetxt 设置 checkpoint 的文件夹
[下图是 RDD.scala 中的 checkpoint 方法]

4、作为最佳实践,一般在进行 checkpoint 方法调用前都要进行 persists 来把当前 RDD 的数据持久化到内存或者是磁盘上,这是因为 checkpoint 是 lazy 级别,必需有 Job 的执行且在Job 执行完成后才会从后往前回溯哪个 RDD 进行了Checkpoint 标记,然后对该标记了要进行 Checkpoint 的 RDD 新启动一个Job 执行具体 Checkpoint 的过程;

5、Checkpoint 改变了 RDD 的 Lineage

6、当我们调用了checkpoint 方法要对RDD 进行Checkpoint 操作的话,此时框架会自动生成 RDDCheckpointData

7、当 RDD 上运行一个Job 后就会立即触发 RDDCheckpointData 中的 checkpoint 方法,在其内部会调用 doCheckpoint( )方法,实际上在生产环境上会调用 ReliableRDDCheckpointData 的 doCheckpoint( )方法

8、在生产环境下会导致 ReliableRDDCheckpointData 的 writeRDDToCheckpointDirectory 的调用,而在 writeRDDToCheckpointDirectory 方法内部会触发runJob 来执行当前的RDD 中的数据写到Checkpoint 的目录中,同时会产生ReliableCheckpointRDD 实例

 

posted @ 2018-06-19 14:44  大葱拌豆腐  阅读(806)  评论(0编辑  收藏  举报