基于Kafka+Spark Streaming+HBase实时点击流案例

 背景

Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver-based Approach 和 Direct Approach),具体细节请参考文章最后官方文档链接,数据存储使用HBase

实现思路

  1. 实现Kafka消息生产者模拟器
  2. Spark Streaming采用Direct Approach方式实时获取Kafka中数据
  3. Spark Streaming对数据进行业务计算后存储到HBase

组件版本

Spark 2.1.0  Kafka0.9.0.1 HBase1.2.0

代码实现

Kafka消息模拟器

object KafkaMessageGenerator {

  private val random = new Random()
  private var pointer = -1

  private val os_type = Array(
    "Android", "IPhone OS",
    "None", "Windows Phone"
  )

  def click(): Double = {
    random.nextInt(10)
  }

  def getOsType(): String = {
    pointer = pointer + 1
    if (pointer >= os_type.length) {
      pointer = 0
      os_type(pointer)
    } else {
      os_type(pointer)
    }
  }
    def main(args: Array[String]): Unit = {

      val topic = "user_events"
      val props = new Properties()
      props.put("bootstrap.servers", "10.3.71.154:9092")
      props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer")
      props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")

      val producer = new KafkaProducer[String, String](props)
      while (true) {
        val event: JSONObject = new JSONObject()
        event.put("uid", UUID.randomUUID()) //随机生成用户id
        event.put("event_time", System.currentTimeMillis.toString) //记录事件发生时间
        event.put("os_type", getOsType) //设备类型
        event.put("click_count", click) //点击次数
        val record = new ProducerRecord[String, String](topic, event.toString)
        producer.send(record)
        println("Message sent: " + event)

        Thread.sleep(200)
      }
    }
}

Spark Streaming主类

object PageViewStream {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("PageViewStream").setMaster("local[*]")
    //创建StreamingContext  批处理间隔5s
    val ssc = new StreamingContext(conf, Seconds(5))
    // kafka配置
    val kafkaParams = Map[String, String](
      "metadata.broker.list" -> "10.3.71.154:9092",
      "serializer.class" -> "kafka.serializer.StringEncoder"
    )
    //创建一个direct stream
    val kafkaStream: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, Set("user_events"))
    val events: DStream[JSONObject] = kafkaStream.flatMap(line => {
      val data: JSONObject = JSON.parseObject(line._2)
      Some(data)
    })

    // 计算用户点击次数
    val userClicks: DStream[(String, Integer)] = events.map(x => (x.getString("uid"), x.getInteger("click_count"))).reduceByKey(_ + _)
    userClicks.foreachRDD(rdd => {
      rdd.foreachPartition(partitionOfRecords => {
        //Hbase配置
        val tableName = "PageViewStream2"
        val hbaseConf = HBaseConfiguration.create()
        hbaseConf.set("hbase.zookeeper.quorum", "master66")
        hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")
        val conn = ConnectionFactory.createConnection(hbaseConf)
        val StatTable = conn.getTable(TableName.valueOf(tableName))
        partitionOfRecords.foreach(pair => {
          //用户ID
          val uid = pair._1
          //点击次数
          val click = pair._2
          //组装数据 创建put对象 rowkey
          val put = new Put(Bytes.toBytes(uid))
          put.addColumn("Stat2".getBytes, "ClickStat".getBytes, Bytes.toBytes("TESTS============"))
          StatTable.put(put)
        })
      })
    })
    ssc.start()
    ssc.awaitTermination()
  }
}

 

 
posted @ 2018-06-08 17:19  大葱拌豆腐  阅读(4071)  评论(0编辑  收藏  举报