[数学]高数部分-Part V 多元函数微分学

Part V 多元函数微分学

多元函数微分的极限定义

\(设f(x,y)的定义域为D,P_0(x_0,y_0)是D的聚点(=内点+边界点), \forall \epsilon>0,\exists \delta>0,当P(x,y)\in D \cap U(P_0, \delta )时,恒有|f(x,y)-A|<\epsilon \Rightarrow \lim_{x\to x_0 , y\to y_0}f(x,y)=A\)

多元函数微分的连续性

\(\lim_{x\to x_0 , y\to y_0}f(x,y)=f(x_0,y_0),则称f(x,y)在(x_0,y_0)处连续\)
\(【注】\lim_{x\to x_0 , y\to y_0}f(x,y) \neq f(x_0,y_0),叫不连续,不讨论间断类型\)

多元函数微分的偏导数 z=f(x, y)

  1. \(\frac{\partial f }{\partial x}|\_{(x\_0,y\_0)}={f}'\_x(x\_0,y\_0) \underline{\underline{\triangle}}\lim_{\triangle x \to \infty}\frac{f(x\_0+\triangle x, y\_0)-f(x\_0,y\_0)}{\triangle x}\)
  2. \(\frac{\partial f }{\partial y}|\_{(x\_0,y\_0)}={f}'\_y(x\_0,y\_0) \underline{\underline{\triangle}}\lim\_{\triangle y \to \infty}\frac{f(x\_0, y\_0+\triangle y)-f(x\_0,y\_0)}{\triangle y}\)

多元函数微分-链式求导规则

\(设z=f(u,v,w), u=u(y), v=v(x,y), w=w(x)。称x,y叫做自变量,u,v,w叫做中间变量,z叫因变量.\)
\(\frac{\partial z}{\partial x} = \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}\)

多元函数-高阶偏导数

\(\frac{\partial z}{\partial x} = \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}\)

多元函数-无条件极值-必要条件

\(设z=f(x,y)在点(x_0, y_0)处\begin{cases} 一阶偏导数存在\\ 取极值 \end{cases} ,则{f}'_x(x_0, y_0)=0,{f}'_y(x_0, y_0)=0\)
【注】适用于三元及以上(常考2-5元)

多元函数-无条件极值-充分条件

\[\begin{cases} {f}''\_{xx}(x\_0,y\_0)=A \\ {f}''\_{xy}(x\_0,y\_0)=B \\ {f}''\_{yy}(x\_0,y\_0)=C \end{cases} \Rightarrow \triangle=B^2-AC \begin{cases} <0 \begin{cases} A>0 \Rightarrow 极小值点 \\ A<0 \Rightarrow 极大值点 \end{cases} \\ >0 \Rightarrow 不是极值点 \\ =0 \Rightarrow 该法失效,另谋它法(概念题) \end{cases} \]

  • Note:只适用于二元

多元函数-条件极值-求法

  1. 提法:\(求目标函数u=f(x,y,z)在约束条件\begin{cases} M (x,y,z)=0\\ N(x,y,z)=0 \end{cases} 下的极值\)
  2. 拉氏乘数法:
    1. \(构造辅助函数F(x,y,z,\lambda,\mu)=f(x,y,z)+\lambda M(x,y,z)+\mu N(x,y,z),(\lambda,\mu均可能取0)\)
    2. \(令{F}'(x)=0,{F}'(y)=0,{F}'(z)=0,{F}'(\lambda)=0,{F}'(\mu)=0\)
    3. \(解方程组 \Rightarrow P_i(x_i, y_i, z_i) \Rightarrow u(P_i),比较 \Rightarrow取最大、最小者为最大值,最小值\)
posted @ 2021-09-23 20:41  Xu_Lin  阅读(676)  评论(0编辑  收藏  举报