[数学]高数部分-Part V 多元函数微分学
Part V 多元函数微分学
多元函数微分的极限定义
\(设f(x,y)的定义域为D,P_0(x_0,y_0)是D的聚点(=内点+边界点), \forall \epsilon>0,\exists \delta>0,当P(x,y)\in D \cap U(P_0, \delta )时,恒有|f(x,y)-A|<\epsilon \Rightarrow \lim_{x\to x_0 , y\to y_0}f(x,y)=A\)
多元函数微分的连续性
\(\lim_{x\to x_0 , y\to y_0}f(x,y)=f(x_0,y_0),则称f(x,y)在(x_0,y_0)处连续\)
\(【注】\lim_{x\to x_0 , y\to y_0}f(x,y) \neq f(x_0,y_0),叫不连续,不讨论间断类型\)
多元函数微分的偏导数 z=f(x, y)
- \(\frac{\partial f }{\partial x}|\_{(x\_0,y\_0)}={f}'\_x(x\_0,y\_0) \underline{\underline{\triangle}}\lim_{\triangle x \to \infty}\frac{f(x\_0+\triangle x, y\_0)-f(x\_0,y\_0)}{\triangle x}\)
- \(\frac{\partial f }{\partial y}|\_{(x\_0,y\_0)}={f}'\_y(x\_0,y\_0) \underline{\underline{\triangle}}\lim\_{\triangle y \to \infty}\frac{f(x\_0, y\_0+\triangle y)-f(x\_0,y\_0)}{\triangle y}\)
多元函数微分-链式求导规则
\(设z=f(u,v,w), u=u(y), v=v(x,y), w=w(x)。称x,y叫做自变量,u,v,w叫做中间变量,z叫因变量.\)
\(\frac{\partial z}{\partial x} = \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}\)
多元函数-高阶偏导数
\(\frac{\partial z}{\partial x} = \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}\)
多元函数-无条件极值-必要条件
\(设z=f(x,y)在点(x_0, y_0)处\begin{cases} 一阶偏导数存在\\ 取极值 \end{cases} ,则{f}'_x(x_0, y_0)=0,{f}'_y(x_0, y_0)=0\)
【注】适用于三元及以上(常考2-5元)
多元函数-无条件极值-充分条件
- Note:只适用于二元
多元函数-条件极值-求法
- 提法:\(求目标函数u=f(x,y,z)在约束条件\begin{cases} M (x,y,z)=0\\ N(x,y,z)=0 \end{cases} 下的极值\)
- 拉氏乘数法:
- \(构造辅助函数F(x,y,z,\lambda,\mu)=f(x,y,z)+\lambda M(x,y,z)+\mu N(x,y,z),(\lambda,\mu均可能取0)\)
- \(令{F}'(x)=0,{F}'(y)=0,{F}'(z)=0,{F}'(\lambda)=0,{F}'(\mu)=0\)
- \(解方程组 \Rightarrow P_i(x_i, y_i, z_i) \Rightarrow u(P_i),比较 \Rightarrow取最大、最小者为最大值,最小值\)