[数学]高数部分-Part IV 一元函数积分学

Part IV 一元函数积分学

不定积分定义

\(\forall x\in I,\ 使{F}'(x)=f(x)成立,则称F(x)在f(x)在I上的一个原函数。全体原函数就叫不定积分,记成:\int f(x)dx=F(x)+C\)

定积分定义

\(\int_{a}^{b} f(x)dx\)

不定积分与定积分的几何意义

\(\int f(x)dx为函数族,\int_{a}^{b} f(x)dx 为面积代表值\)

牛顿-莱布尼兹公式 / N-L 公式

\(\int_{a}^{b} f(x)dx =F(x)\mid_{x=a}^{x=b}=F(b)-F(a)\)

基本积分公式

\(\int x^kdx=\frac{1}{k+1}x^{k+1}+C\)

\( k\neq1 \begin{cases} \int\frac{1}{x^2}dx=-\frac{1}{x}+C \\ \int \frac{1}{\sqrt{x}}dx=2\sqrt{x}+C \end{cases} \)

\(\int \frac{1}{x}dx = ln|x|+C\)

\(\int a^xdx=\frac{1}{lna}a^x+C,a>0, a\neq1\)

\(\int e^xdx=e^x+C\)

\(\int sinxdx=-cosx+C\)

\(\int cosxdx=sinx+C\)

\(\int tanxdx=-ln|cosx|+C\)

\(\int cotxdx=ln|sinx|+C\)

\(\int secxdx=ln|secx + tanx|+C\)

\(\int cscxdx=ln|cscx - cotx|+C\)

\(\int sec^2xdx=-cotx+C\)

\(\int secxtanxdx=secx+C\)

\(\int secxcotxdx=-cscx+C\)

\(\int \frac{1}{\sqrt{1-x^2}}dx=arcsinx+C\)

\(\int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C\)

\(\int \frac{1}{\sqrt{a^2+x^2}}dx=ln(x+\sqrt{a^2+x^2})+C\)

\(\int \frac{1}{\sqrt{x^2-a^2}}dx=ln(x+\sqrt{x^2-a^2})+C\)

\(\int \frac{1}{1+x^2}dx=arctanx+C\)

\(\int \frac{1}{a^2+x^2}dx=\frac{1}{a}arctan{\frac{x}{a}}+C\)

\(\int \frac{1}{a^2-x^2}dx=\frac{1}{2a}ln{\frac{a+x}{a-x}}+C\)

\(\int \frac{1}{x^2-a^2}dx=\frac{1}{2a}ln{\frac{x-a}{x+a}}+C\)

\(\int \sqrt{a^2-x^2}dx=\frac{a^2}{2}arcsin{\frac{x}{a}}+\frac{x}{2}\sqrt{a^2-x^2}+C\)

点火公式(华里士公式)

  • $ I_n=\int_{\frac{\pi}{2}}{0}sinnxdx=\int_{\frac{\pi}{2}}{0}cosnxdx=\begin{cases}
    \frac{n-1}{n}\cdot \frac{n-3}{n-2} \cdot\cdot\cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & n为正整数 \
    \frac{n-1}{n}\cdot \frac{n-3}{n-2} \cdot\cdot\cdot \frac{4}{5} \cdot \frac{2}{3} & n为大于1的正奇数
    \end{cases}$
  • 偶数时点火成功乘 \(\frac{\pi}2\),奇数时点火失败以 1 停止

积分-换元法的三板斧

  • 当凑微分法不成功时,考虑换元,从而使题目从复杂变简单
  1. 三角换元

    • \(三角换元--当被积函数f(x)含有\sqrt{a^2-x^2}, \sqrt{a^2+x^2}, \sqrt{x^2-a^2}\)
    1. \(\sqrt{a^2-x^2} \Rightarrow x=asint,(-\frac{\pi}{2}<t<\frac{\pi}{2})\)
    2. \(\sqrt{a^2+x^2} \Rightarrow x=atant,(-\frac{\pi}{2}<t<\frac{\pi}{2})\)
    3. \(\sqrt{x^2-a^2} \Rightarrow x=asect,\begin{cases}x>0,0\leq t\leq \frac{\pi}{2}\\ x<0,\frac{\pi}{2}\leq t \leq \pi\end{cases}\)
    4. Note\(若见到\sqrt{ax^2+bx+c},要先化为\sqrt{\phi^2(x)-k^2},\sqrt{k^2-\phi^2(x)},\sqrt{\phi^2(x)+k^2},再做三角换元\)
  2. 倒带换
    \((x=\frac{1}{t})---可用于分子次数明显低于分母次数的情况\)

  3. 复杂部分换元——令复杂部分=t
    \(\begin{cases}\sqrt[n]{ax+b}ax+b=t,\sqrt{\frac{ax+b}{cx+d}}=t,\sqrt{ae^{bx}+c}=t,(根式代换)\\ a^x,e^x=t,(指数代换) \\ lnx=t,(对数代换)\\ arcsinx,arctanx=t,(反三角函数代换)\end{cases}\)

分部积分法

\(\int udv=uv- \int vdu (前面的积分困难,后面的积分简单)\)
反对幂指三,排前面的求导,排后面的积分

有理函数积分法

  1. 定义:\(形如\int \frac{P_n(x)}{Q_m(x)}dx,(n<m)的积分\)
  2. \(将\frac{P_n(x)}{Q_m(x)}拆成若干最简有理分式之和\)
  3. 拆分原则
    1. \(Q_m(x)分解出(ax+b)^k\Rightarrow 产生k项\)
      \(\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdot\cdot\cdot + \frac{A_k}{(ax+b)^k},k=1,2 \cdot \cdot \cdot\)
    2. \(Q_m(x)分解出(px^2+qx+r)^k \Rightarrow 产生k项\)
      \(\frac{A_1x+B_1}{px^2+qx+r} + \frac{A_2x+B_2}{(px^2+qx+r)^2} + \cdot\cdot\cdot + \frac{A_kx+B_k}{(px^2+qx+r)^k},k=1,2 \cdot\cdot\cdot\)

积分中值定理

\(若函数f(x)在闭区间[a,b]上连续,则\exists \xi \in (a,b),使得\int_a^bf(x) = f(\xi)(b-a)\)

\(若函数f(x)在闭区间[a,b]上连续,g(x)在闭区间[a,b]上不变号且可积,则\exists \xi \in (a,b),使得\int_a^bf(x)g(x) = f(\xi)\int_a^bg(x)\)

定积分的计算

\(\int_a^bf(x)dx=F(b)-F(a)\)

  1. 先按四大积分法求出F(x)
  2. 带入上下限,要注意换元时的细节:
    \(对于\int_a^bf(x)dx=\int_{\phi^{-1}(a)}^{\phi^{-1}(b)}f[\phi(t)]{\phi}'(t)dt, (令x=\phi(t));且要求{\phi}'(t) 连续,且x=\phi(t)不超过区间[a,b]\)

用积分表达和计算平面图形的面积

\(y=y_1(x), y=y_2(x), x=a, x=b, (a < b) 所围成的平面图形的面积:\)

\(S=\int_a^b|y_2(x)-y_1(x)|dx\)

用积分表达和计算旋转体的体积

  1. \(y=y(x)与x=a,x=b, (a < b ) 及x轴所围图形绕x轴旋转一周所得的旋转体体积为:V=\int_a^b\pi y^2(x)dx\)
  2. \(y=y(x)与x=a,x=b,( a < b ) 及x轴所围图形绕y轴旋转一周所得的旋转体体积为:V_y=\int_a^b2\pi x |y(x)|dx, (柱壳法)\)

用积分表达和计算函数的平均值---y(x)在[a,b]上的平均值是

\(y(x)在[a,b]上的平均值\overline{y}=\frac{\int_a^by(x)dx}{b-a}\)

posted @ 2021-09-23 20:40  Xu_Lin  阅读(653)  评论(0编辑  收藏  举报