[数学基础]概率论与数理统计相关概念学习

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:\(A \subset B\),若\(A\)发生,则\(B\)发生。

(2) 相等事件:\(A = B\),即\(A \subset B\),且\(B \subset A\)

(3) 和事件:\(A\bigcup B\)(或\(A + B\)),\(A\)\(B\)中至少有一个发生。

(4) 差事件:\(A - B\)\(A\)发生但\(B\)不发生。

(5) 积事件:\(A\bigcap B\)(或\({AB}\)),\(A\)\(B\)同时发生。

(6) 互斥事件(互不相容):\(A\bigcap B\)=\(\varnothing\)

(7) 互逆事件(对立事件):
\(A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}\)

2.运算律
(1) 交换律:\(A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A\)
(2) 结合律:\((A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)\)
(3) 分配律:\((A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)\)

3.德$\centerdot $摩根律

\(\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}\) \(\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}\)

4.完全事件组

\({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}\)两两互斥,且和事件为必然事件,即\({{A}_{i}}\bigcap {{A}_{j}}=\varnothing, i\ne j ,\underset{i=1}{\overset{n}{\mathop \bigcup }}\,=\Omega\)

5.概率的基本公式
(1)条件概率:
\(P(B|A)=\frac{P(AB)}{P(A)}\),表示\(A\)发生的条件下,\(B\)发生的概率。

(2)全概率公式:
\(P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega\)

(3) Bayes 公式:

\(P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n\)
注:上述公式中事件\({{B}_{i}}\)的个数可为可列个。

(4)乘法公式:
\(P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})\)
\(P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})\)

6.事件的独立性

(1)\(A\)\(B\)相互独立

\(\Leftrightarrow P(AB)=P(A)P(B)\)

(2)\(A\)\(B\)\(C\)两两独立
\(\Leftrightarrow P(AB)=P(A)P(B)\);\(P(BC)=P(B)P(C)\) ;\(P(AC)=P(A)P(C)\);

(3)\(A\)\(B\)\(C\)相互独立
\(\Leftrightarrow P(AB)=P(A)P(B)\); \(P(BC)=P(B)P(C)\) ;
\(P(AC)=P(A)P(C)\) ; \(P(ABC)=P(A)P(B)P(C)\)

7.独立重复试验

将某试验独立重复\(n\)次,若每次实验中事件 A 发生的概率为\(p\),则\(n\)次试验中\(A\)发生\(k\)次的概率为:
\(P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}\)

8.重要公式与结论
\((1)P(\bar{A})=1-P(A)\)

\((2)P(A\bigcup B)=P(A)+P(B)-P(AB)\)
\(P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)\)

\((3)P(A-B)=P(A)-P(AB)\)

\((4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}),\)
\(P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)\)

(5)条件概率\(P(\centerdot |B)\)满足概率的所有性质,
例如:. \(P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)\)
\(P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)\)
\(P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)\)

(6)若\({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}}\)相互独立,则\(P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})},\)
\(P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}\)

(7)互斥、互逆与独立性之间的关系:
\(A\)\(B\)互逆\(\Rightarrow\) \(A\)\(B\)互斥,但反之不成立,\(A\)\(B\)互斥(或互逆)且均非零概率事件$\Rightarrow $$A\(与\)B$不独立.

(8)若\({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}\)相互独立,则\(f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})\)\(g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}})\)也相互独立,其中\(f(\centerdot ),g(\centerdot )\)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为 1(或 0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义: \(F(x) = P(X \leq x), - \infty < x < + \infty\)

性质:(1)\(0 \leq F(x) \leq 1\)

(2) \(F(x)\)单调不减

(3) 右连续\(F(x + 0) = F(x)\)

(4) \(F( - \infty) = 0,F( + \infty) = 1\)

3.离散型随机变量的概率分布

\(P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1\)

4.连续型随机变量的概率密度

概率密度\(f(x)\);非负可积,且:

(1)\(f(x) \geq 0,\)

(2)\(\int_{- \infty}^{+\infty}{f(x){dx} = 1}\)

(3)\(x\)\(f(x)\)的连续点,则:

\(f(x) = F'(x)\)分布函数\(F(x) = \int_{- \infty}^{x}{f(t){dt}}\)

5.常见分布

(1) 0-1 分布:\(P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1\)

(2) 二项分布:\(B(n,p)\)\(P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n\)

(3) Poisson分布:\(p(\lambda)\)\(P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots\)

(4) 均匀分布\(U(a,b)\)\(f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}\)

(5) 正态分布:\(N(\mu,\sigma^{2}):\) \(\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty\)

(6)指数分布:\(E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}\)

(7)几何分布:\(G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.\)

(8)超几何分布: \(H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)\)

6.随机变量函数的概率分布

(1)离散型:\(P(X = x_{1}) = p_{i},Y = g(X)\)

则: \(P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}\)

(2)连续型:\(X\tilde{\ }f_{X}(x),Y = g(x)\)

则:\(F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}\)\(f_{Y}(y) = F'_{Y}(y)\)

7.重要公式与结论

(1) \(X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2},\) \(\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)\)

(2) \(X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})\)

(3) \(X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)\)

(4) \(X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)\)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量\((X,Y)\), 联合分布为\(F(x,y) = P(X \leq x,Y \leq y)\)

2.二维离散型随机变量的分布

(1) 联合概率分布律 \(P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots\)

(2) 边缘分布律 \(p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots\) \(p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots\)

(3) 条件分布律 \(P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}}\)
\(P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}\)

3. 二维连续性随机变量的密度

(1) 联合概率密度\(f(x,y):\)

  1. \(f(x,y) \geq 0\)

  2. \(\int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1\)

(2) 分布函数:\(F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}\)

(3) 边缘概率密度: \(f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}}\) \(f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}\)

(4) 条件概率密度:\(f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)}\) \(f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}\)

4.常见二维随机变量的联合分布

(1) 二维均匀分布:\((x,y) \sim U(D)\) ,\(f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}\)

(2) 二维正态分布:\((X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)\),\((X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)\)

\(f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}\)

5.随机变量的独立性和相关性

\(X\)\(Y\)的相互独立:\(\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right)\):

\(\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j}\)(离散型)
\(\Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)\)(连续型)

\(X\)\(Y\)的相关性:

相关系数\(\rho_{{XY}} = 0\)时,称\(X\)\(Y\)不相关,
否则称\(X\)\(Y\)相关

6.两个随机变量简单函数的概率分布

离散型: \(P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right)\) 则:

\(P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}\)

连续型: \(\left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)\)
则:

\(F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}\)\(f_{z}(z) = F'_{z}(z)\)

7.重要公式与结论

(1) 边缘密度公式: \(f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,}\)
\(f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}\)

(2) \(P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}\)

(3) 若\((X,Y)\)服从二维正态分布\(N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)\)
则有:

  1. \(X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).\)

  2. \(X\)\(Y\)相互独立\(\Leftrightarrow \rho = 0\),即\(X\)\(Y\)不相关。

  3. \(C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)\)

  4. \({\ X}\)关于\(Y=y\)的条件分布为: \(N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))\)

  5. \(Y\)关于\(X = x\)的条件分布为: \(N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))\)

(4) 若\(X\)\(Y\)独立,且分别服从\(N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),\)
则:\(\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),\)

\(C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).\)

(5) 若\(X\)\(Y\)相互独立,\(f\left( x \right)\)\(g\left( x \right)\)为连续函数, 则\(f\left( X \right)\)\(g(Y)\)也相互独立。

随机变量的数字特征

1.数学期望

离散型:\(P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}\)

连续型: \(X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}\)

性质:

(1) \(E(C) = C,E\lbrack E(X)\rbrack = E(X)\)

(2) \(E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)\)

(3) 若\(X\)\(Y\)独立,则\(E(XY) = E(X)E(Y)\)

(4)\(\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})\)

2.方差\(D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}\)

3.标准差\(\sqrt{D(X)}\)

4.离散型:\(D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}\)

5.连续型:\(D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx\)

性质:

(1)\(\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0\)

(2) \(X\)\(Y\)相互独立,则\(D(X \pm Y) = D(X) + D(Y)\)

(3)\(\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)\)

(4) 一般有 \(D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}\)

(5)\(\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)\)

(6)\(\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1\)

6.随机变量函数的数学期望

(1) 对于函数\(Y = g(x)\)

\(X\)为离散型:\(P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}\)

\(X\)为连续型:\(X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}\)

(2) \(Z = g(X,Y)\);\(\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}}\); \(E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}\) \(\left( X,Y \right)\sim f(x,y)\);\(E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}\)

7.协方差

\(Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack\)

8.相关系数

\(\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}\),\(k\)阶原点矩 \(E(X^{k})\);
\(k\)阶中心矩 \(E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}\)

性质:

(1)\(\ Cov(X,Y) = Cov(Y,X)\)

(2)\(\ Cov(aX,bY) = abCov(Y,X)\)

(3)\(\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)\)

(4)\(\ \left| \rho\left( X,Y \right) \right| \leq 1\)

(5) \(\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1\) ,其中\(a > 0\)

\(\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1\)
,其中\(a < 0\)

9.重要公式与结论

(1)\(\ D(X) = E(X^{2}) - E^{2}(X)\)

(2)\(\ Cov(X,Y) = E(XY) - E(X)E(Y)\)

(3) \(\left| \rho\left( X,Y \right) \right| \leq 1,\)\(\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1\),其中\(a > 0\)

\(\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1\),其中\(a < 0\)

(4) 下面 5 个条件互为充要条件:

\(\rho(X,Y) = 0\) \(\Leftrightarrow Cov(X,Y) = 0\) \(\Leftrightarrow E(X,Y) = E(X)E(Y)\) \(\Leftrightarrow D(X + Y) = D(X) + D(Y)\) \(\Leftrightarrow D(X - Y) = D(X) + D(Y)\)

注:\(X\)\(Y\)独立为上述 5 个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用\(X\)表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体\(X\)\(n\)个相互独立且与总体同分布的随机变量\(X_{1},X_{2}\cdots,X_{n}\),称为容量为\(n\)的简单随机样本,简称样本。

统计量:设\(X_{1},X_{2}\cdots,X_{n},\)是来自总体\(X\)的一个样本,\(g(X_{1},X_{2}\cdots,X_{n})\))是样本的连续函数,且\(g()\)中不含任何未知参数,则称\(g(X_{1},X_{2}\cdots,X_{n})\)为统计量。

样本均值:\(\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}\)

样本方差:\(S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}\)

样本矩:样本\(k\)阶原点矩:\(A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots\)

样本\(k\)阶中心矩:\(B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots\)

2.分布

\(\chi^{2}\)分布:\(\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)\),其中\(X_{1},X_{2}\cdots,X_{n},\)相互独立,且同服从\(N(0,1)\)

\(t\)分布:\(T = \frac{X}{\sqrt{Y/n}}\sim t(n)\) ,其中\(X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),\)\(X\)\(Y\) 相互独立。

\(F\)分布:\(F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})\),其中\(X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),\)\(X\)\(Y\)相互独立。

分位数:若\(P(X \leq x_{\alpha}) = \alpha,\)则称\(x_{\alpha}\)\(X\)\(\alpha\)分位数

3.正态总体的常用样本分布

(1) 设\(X_{1},X_{2}\cdots,X_{n}\)为来自正态总体\(N(\mu,\sigma^{2})\)的样本,

\(\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}\)则:

  1. \(\overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }\)或者\(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)\)

  2. \(\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}\)

  3. \(\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}\)

4)\({\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)\)

4.重要公式与结论

(1) 对于\(\chi^{2}\sim\chi^{2}(n)\),有\(E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;\)

(2) 对于\(T\sim t(n)\),有\(E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)\)

(3) 对于\(F\tilde{\ }F(m,n)\),有 \(\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};\)

(4) 对于任意总体\(X\),有 \(E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}\)

posted @ 2021-03-29 21:49  Xu_Lin  阅读(771)  评论(0编辑  收藏  举报