PostgreSQL 数据去重大法
标签
PostgreSQL , 去重 , 单列去重 , 多列去重 , 行去重 , 多列混合去重 , varidict 参数 , 数组排序 , 数组元素重排
背景
去重的需求比较常见,去重也可以衍生出很多变种。例如
1. 单列去重,很好理解,就是按某列去除重复记录。保留规则(例如保留最新的,保留最旧的,或者保留某个其他字段最大的)。
2. 多列去重,按多列,去除重复记录。保留规则(例如保留最新的,保留最旧的,或者保留某个其他字段最大的)。
3. 行去重,按行,去除重复记录。保留规则(例如保留最新的,保留最旧的,或者保留某个其他字段最大的)。
4. 多列混合去重,按多列混合模式(ROW1: col1=1 , col2=2;ROW2: col1=2, col2=1;这种混合重复的去重),去除重复记录。保留规则(例如保留最新的,保留最旧的,或者保留某个其他字段最大的)。
下面依次举例,使用不同的方法去重,用户可以自由选择效率最佳的。
单列去重
create table test1(id int primary key, c1 int, c2 timestamp); insert into test1 select generate_series(1,1000000), random()*1000, clock_timestamp(); create index idx_test1 on test1(c1,id); -- 这个索引可以起到加速效果。如果没有这个索引,以下三种方法,第二种效率最高,其次是第三种。
需求:去除c1重复的行,保留id最大的。
方法1,使用聚合,not in
postgres=# explain delete from test1 where id not in (select max(id) from test1 group by c1); QUERY PLAN ------------------------------------------------------------------------------------------------------------------ Delete on test1 (cost=35115.63..53023.01 rows=500055 width=6) -> Seq Scan on test1 (cost=35115.63..53023.01 rows=500055 width=6) Filter: (NOT (hashed SubPlan 1)) SubPlan 1 -> GroupAggregate (cost=0.42..35113.13 rows=1001 width=8) Group Key: test1_1.c1 -> Index Only Scan using idx_test1 on test1 test1_1 (cost=0.42..30102.57 rows=1000110 width=8) (7 rows) Time: 0.564 ms postgres=# delete from test1 where id not in (select max(id) from test1 group by c1); DELETE 998999 Time: 1126.504 ms (00:01.127)
方法2,使用窗口查询,IN
postgres=# explain select id from (select row_number() over(partition by c1 order by id) as rn, id from test1) t where t.rn<>1; QUERY PLAN -------------------------------------------------------------------------------------------------- Subquery Scan on t (cost=0.42..60075.54 rows=995109 width=4) Filter: (t.rn <> 1) -> WindowAgg (cost=0.42..47574.17 rows=1000110 width=16) -> Index Only Scan using idx_test1 on test1 (cost=0.42..30072.24 rows=1000110 width=8) (4 rows) Time: 0.512 ms postgres=# delete from test1 where id in (select id from (select row_number() over(partition by c1 order by id) as rn, id from test1) t where t.rn<>1); DELETE 998999 Time: 2430.276 ms (00:02.430)
方法3,使用PLPGSQL,内部使用排序+游标。
每条记录判断一次的方法去重,只有一次排序+每条记录比对的开销。
do language plpgsql $$ declare v_rec record; v_c1 int; cur1 cursor for select c1,id from test1 order by c1,id for update; begin for v_rec in cur1 loop if v_rec.c1 = v_c1 then delete from test1 where current of cur1; end if; v_c1 := v_rec.c1; end loop; end; $$; DO Time: 7345.773 ms (00:07.346) postgres=# select count(*) from test1; count ------- 1001 (1 row) Time: 61.672 ms postgres=# select * from test1 limit 10; id | c1 | c2 ----+-----+---------------------------- 1 | 582 | 2017-06-02 10:21:10.60918 2 | 278 | 2017-06-02 10:21:10.609331 3 | 659 | 2017-06-02 10:21:10.609338 4 | 372 | 2017-06-02 10:21:10.609341 5 | 184 | 2017-06-02 10:21:10.609343 6 | 121 | 2017-06-02 10:21:10.609345 7 | 132 | 2017-06-02 10:21:10.609347 8 | 290 | 2017-06-02 10:21:10.609348 9 | 980 | 2017-06-02 10:21:10.60935 10 | 305 | 2017-06-02 10:21:10.609352 (10 rows)
PostgreSQL 10黑科技
即使只有部分驱动列,也能使用索引排序。
例如index(c1),可以用于order by c1,id;
《PostgreSQL 10.0 preview 优化器改进 - 不完整索引支持复合排序》
多列去重
测试数据
create table test1(id int primary key, c1 int, c2 int, c3 timestamp); insert into test1 select generate_series(1,1000000), random()*1000, random()*1000, clock_timestamp(); create index idx_test1 on test1(c1,c2,id); -- 这个索引可以起到加速效果。
需求:去除c1,c2重复的行,保留id最大的。
方法1,
postgres=# explain (analyze,verbose,timing,costs,buffers) delete from test1 where id not in (select max(id) from test1 group by c1,c2); QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Delete on public.test1 (cost=40820.36..59690.36 rows=500000 width=6) (actual time=1634.960..1634.960 rows=0 loops=1) Buffers: shared hit=1378788 -> Seq Scan on public.test1 (cost=40820.36..59690.36 rows=500000 width=6) (actual time=1090.956..1446.374 rows=367618 loops=1) Output: test1.ctid Filter: (NOT (hashed SubPlan 1)) Rows Removed by Filter: 632382 Buffers: shared hit=1011170 SubPlan 1 -> GroupAggregate (cost=0.42..40570.36 rows=100000 width=12) (actual time=0.035..842.497 rows=632382 loops=1) Output: max(test1_1.id), test1_1.c1, test1_1.c2 Group Key: test1_1.c1, test1_1.c2 Buffers: shared hit=1004800 -> Index Only Scan using idx_test1 on public.test1 test1_1 (cost=0.42..32070.36 rows=1000000 width=12) (actual time=0.027..587.506 rows=1000000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.id Heap Fetches: 1000000 Buffers: shared hit=1004800 Planning time: 0.211 ms Execution time: 1641.679 ms (18 rows)
方法2,
postgres=# explain (analyze,verbose,timing,costs,buffers) delete from test1 where id in (select id from (select row_number() over(partition by c1,c2 order by id) as rn, id from test1) t where t.rn<>1); QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Delete on public.test1 (cost=83752.89..130385.27 rows=995000 width=34) (actual time=2199.376..2199.376 rows=0 loops=1) Buffers: shared hit=1378741, temp read=6482 written=6420 -> Hash Semi Join (cost=83752.89..130385.27 rows=995000 width=34) (actual time=1381.636..1929.284 rows=367584 loops=1) Output: test1.ctid, t.* Hash Cond: (test1.id = t.id) Buffers: shared hit=1011157, temp read=6482 written=6420 -> Seq Scan on public.test1 (cost=0.00..16370.00 rows=1000000 width=10) (actual time=0.013..140.130 rows=1000000 loops=1) Output: test1.ctid, test1.id Buffers: shared hit=6370 -> Hash (cost=64513.39..64513.39 rows=995000 width=32) (actual time=1377.349..1377.349 rows=367584 loops=1) Output: t.*, t.id Buckets: 65536 Batches: 32 Memory Usage: 1326kB Buffers: shared hit=1004787, temp written=2591 -> Subquery Scan on t (cost=0.42..64513.39 rows=995000 width=32) (actual time=0.074..1269.919 rows=367584 loops=1) Output: t.*, t.id Filter: (t.rn <> 1) Rows Removed by Filter: 632416 Buffers: shared hit=1004787 -> WindowAgg (cost=0.42..52013.39 rows=1000000 width=20) (actual time=0.054..1117.668 rows=1000000 loops=1) Output: row_number() OVER (?), test1_1.id, test1_1.c1, test1_1.c2 Buffers: shared hit=1004787 -> Index Only Scan using idx_test1 on public.test1 test1_1 (cost=0.42..32013.39 rows=1000000 width=12) (actual time=0.035..627.329 rows=1000000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.id Heap Fetches: 1000000 Buffers: shared hit=1004787 Planning time: 0.565 ms Execution time: 2199.450 ms (27 rows)
方法3,
postgres=# do language plpgsql $$ declare v_rec record; v_c1 int; v_c2 int; cur1 cursor for select c1,c2 from test1 order by c1,c2,id for update; begin for v_rec in cur1 loop if v_rec.c1 = v_c1 and v_rec.c2=v_c2 then delete from test1 where current of cur1; end if; v_c1 := v_rec.c1; v_c2 := v_rec.c2; end loop; end; $$; DO Time: 4637.183 ms (00:04.637)
行去重
测试数据
create table test1(c1 int, c2 int); insert into test1 select random()*1000, random()*1000 from generate_series(1,1000000); -- 行号ctid 系统列无法创建索引
需求:去除重复的行,保留任意一条。
因为没有PK了,可以通过行号来进行保留。
方法1,ctid的not in会导致loop,验证影响性能,不建议使用not in的方法
postgres=# explain (analyze,verbose,timing,costs,buffers) delete from test1 where ctid not in (select max(ctid) from test1 group by c1,c2); ^CCancel request sent ERROR: 57014: canceling statement due to user request LOCATION: ProcessInterrupts, postgres.c:2984 Time: 426433.450 ms (07:06.433) postgres=# truncate test1; TRUNCATE TABLE postgres=# insert into test1 select random()*1000, random()*1000 from generate_series(1,10000); INSERT 0 10000 postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test1 where ctid not in (select max(ctid) from test1 group by c1,c2); QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------- Seq Scan on public.test1 (cost=222.97..90895.39 rows=5085 width=8) (actual time=54.451..7741.146 rows=51 loops=1) Output: test1.c1, test1.c2 Filter: (NOT (SubPlan 1)) Rows Removed by Filter: 9949 Buffers: shared hit=90 SubPlan 1 发生了LOOP -> Materialize (cost=222.97..238.23 rows=1017 width=14) (actual time=0.001..0.297 rows=5000 loops=10000) Output: (max(test1_1.ctid)), test1_1.c1, test1_1.c2 Buffers: shared hit=45 -> HashAggregate (cost=222.97..233.14 rows=1017 width=14) (actual time=4.757..6.655 rows=9949 loops=1) Output: max(test1_1.ctid), test1_1.c1, test1_1.c2 Group Key: test1_1.c1, test1_1.c2 Buffers: shared hit=45 -> Seq Scan on public.test1 test1_1 (cost=0.00..146.70 rows=10170 width=14) (actual time=0.005..1.588 rows=10000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.ctid Buffers: shared hit=45 Planning time: 0.121 ms Execution time: 7741.277 ms (18 rows) 使用用户定义的列不会有这个问题,已反馈给社区 drop table test1; create table test1(id int, c1 int, c2 int); insert into test1 select id, random()*1000, random()*1000 from generate_series(1,10000) t(id); postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test1 where id not in (select max(id) from test1 group by c1,c2); QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------- Seq Scan on public.test1 (cost=1048.18..1243.43 rows=5610 width=12) (actual time=11.762..13.627 rows=48 loops=1) Output: test1.id, test1.c1, test1.c2 Filter: (NOT (hashed SubPlan 1)) Rows Removed by Filter: 9952 Buffers: shared hit=110 SubPlan 1 -> GroupAggregate (cost=921.96..1045.38 rows=1122 width=12) (actual time=5.355..9.162 rows=9952 loops=1) Output: max(test1_1.id), test1_1.c1, test1_1.c2 Group Key: test1_1.c1, test1_1.c2 Buffers: shared hit=55 -> Sort (cost=921.96..950.01 rows=11220 width=12) (actual time=5.350..6.101 rows=10000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.id Sort Key: test1_1.c1, test1_1.c2 Sort Method: quicksort Memory: 853kB Buffers: shared hit=55 -> Seq Scan on public.test1 test1_1 (cost=0.00..167.20 rows=11220 width=12) (actual time=0.004..1.528 rows=10000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.id Buffers: shared hit=55 Planning time: 58.784 ms Execution time: 13.685 ms (20 rows)
方法2,
postgres=# explain (analyze,verbose,timing,costs,buffers) delete from test1 where ctid in (select ctid from (select row_number() over(partition by c1,c2 order by ctid) as rn, ctid from test1) t where t.rn<>1); QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Delete on public.test1 (cost=422032.41..427035.41 rows=500000 width=36) (actual time=3525.690..3525.690 rows=0 loops=1) Buffers: shared hit=376073 dirtied=4398, temp read=10658 written=10683 -> Merge Join (cost=422032.41..427035.41 rows=500000 width=36) (actual time=3003.047..3352.172 rows=367223 loops=1) Output: test1.ctid, t.* Inner Unique: true Merge Cond: (test1.ctid = t.ctid) Buffers: shared hit=8850, temp read=10658 written=10683 -> Sort (cost=122873.59..125373.59 rows=1000000 width=6) (actual time=786.814..883.721 rows=1000000 loops=1) Output: test1.ctid Sort Key: test1.ctid Sort Method: external sort Disk: 15656kB Buffers: shared hit=4425, temp read=1957 written=1957 -> Seq Scan on public.test1 (cost=0.00..14425.00 rows=1000000 width=6) (actual time=0.021..112.431 rows=1000000 loops=1) Output: test1.ctid Buffers: shared hit=4425 -> Sort (cost=299158.81..299159.31 rows=200 width=36) (actual time=2216.021..2268.235 rows=367223 loops=1) Output: t.*, t.ctid Sort Key: t.ctid Sort Method: external sort Disk: 18688kB Buffers: shared hit=4425, temp read=8701 written=8726 -> Unique (cost=294176.17..299151.17 rows=200 width=36) (actual time=1790.180..1949.522 rows=367223 loops=1) Output: t.*, t.ctid Buffers: shared hit=4425, temp read=6365 written=6390 -> Sort (cost=294176.17..296663.67 rows=995000 width=36) (actual time=1790.179..1874.394 rows=367223 loops=1) Output: t.*, t.ctid Sort Key: t.ctid Sort Method: external merge Disk: 18744kB Buffers: shared hit=4425, temp read=6365 written=6390 -> Subquery Scan on t (cost=125069.59..160069.59 rows=995000 width=36) (actual time=692.878..1542.122 rows=367223 loops=1) Output: t.*, t.ctid Filter: (t.rn <> 1) Rows Removed by Filter: 632777 Buffers: shared hit=4425, temp read=4022 written=4039 -> WindowAgg (cost=125069.59..147569.59 rows=1000000 width=22) (actual time=692.858..1401.210 rows=1000000 loops=1) Output: row_number() OVER (?), test1_1.ctid, test1_1.c1, test1_1.c2 Buffers: shared hit=4425, temp read=4022 written=4039 -> Sort (cost=125069.59..127569.59 rows=1000000 width=14) (actual time=692.850..947.055 rows=1000000 loops=1) Output: test1_1.ctid, test1_1.c1, test1_1.c2 Sort Key: test1_1.c1, test1_1.c2, test1_1.ctid Sort Method: external merge Disk: 25496kB Buffers: shared hit=4425, temp read=4022 written=4039 -> Seq Scan on public.test1 test1_1 (cost=0.00..14425.00 rows=1000000 width=14) (actual time=0.010..131.128 rows=1000000 loops=1) Output: test1_1.ctid, test1_1.c1, test1_1.c2 Buffers: shared hit=4425 Planning time: 0.247 ms Execution time: 3547.727 ms (46 rows)
方法3,
postgres=# do language plpgsql $$ declare v_rec record; v_c1 int; v_c2 int; cur1 cursor for select c1,c2 from test1 order by c1,c2,ctid for update; begin for v_rec in cur1 loop if v_rec.c1 = v_c1 and v_rec.c2=v_c2 then delete from test1 where current of cur1; end if; v_c1 := v_rec.c1; v_c2 := v_rec.c2; end loop; end; $$; DO Time: 5395.774 ms (00:05.396)
多列混合去重
多列去重,可以使用数组的方法,如下
但是需要注意数组内元素的顺序不一致时,两个数组元素是不相等的。
postgres=# select array[1,2] = array[2,1]; ?column? ---------- f (1 row) postgres=# select array[1,2] @> array[2,1] and array[2,1] @> array[1,1,2]; ?column? ---------- t (1 row) postgres=# select array[1,2] @> array[2,2,1] and array[2,1] @> array[1,1,2]; ?column? ---------- t (1 row)
所以需要对元素排序存放,将需要参与去重的列,作为数组元素即可。
创建一个支持任意列的排序函数,输出排序后的数组
postgres=# create or replace function sort_vals(variadic v_arr text[]) returns text[] as $$ select array_agg(arr order by arr) from unnest(v_arr) t(arr); $$ language sql strict; postgres=# select sort_vals('a','a','b','a','c'); sort_vals ------------- {a,a,a,b,c} (1 row)
测试数据
create table test1(c1 int, c2 int); insert into test1 select random()*1000, random()*1000 from generate_series(1,1000000);
需求:去除c1,c2交叉重复的记录(1,2; 2,1 认为是重复的),保留任意一条。
方法2-1,使用sort_vals排序重组数组(简单,好理解)
postgres=# explain (analyze,verbose,timing,costs,buffers) delete from test1 where ctid in (select ctid from (select row_number() over(partition by sort_vals(c1::text,c2::text) order by ctid) as rn, ctid from test1) t where t.rn<>1); QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Delete on public.test1 (cost=963704.16..968707.16 rows=500000 width=36) (actual time=16466.913..16466.913 rows=0 loops=1) Buffers: shared hit=576071, temp read=18863 written=18901 -> Merge Join (cost=963704.16..968707.16 rows=500000 width=36) (actual time=15766.506..16202.766 rows=567213 loops=1) Output: test1.ctid, t.* Inner Unique: true Merge Cond: (test1.ctid = t.ctid) Buffers: shared hit=8858, temp read=18863 written=18901 -> Sort (cost=122873.59..125373.59 rows=1000000 width=6) (actual time=782.867..880.729 rows=1000000 loops=1) Output: test1.ctid Sort Key: test1.ctid Sort Method: external sort Disk: 15656kB Buffers: shared hit=4425, temp read=1957 written=1957 -> Seq Scan on public.test1 (cost=0.00..14425.00 rows=1000000 width=6) (actual time=0.009..110.757 rows=1000000 loops=1) Output: test1.ctid Buffers: shared hit=4425 -> Sort (cost=840830.56..840831.06 rows=200 width=36) (actual time=14983.595..15066.186 rows=567213 loops=1) Output: t.*, t.ctid Sort Key: t.ctid Sort Method: external sort Disk: 28864kB Buffers: shared hit=4433, temp read=16906 written=16944 -> Unique (cost=835847.92..840822.92 rows=200 width=36) (actual time=14316.637..14568.357 rows=567213 loops=1) Output: t.*, t.ctid Buffers: shared hit=4433, temp read=13298 written=13336 -> Sort (cost=835847.92..838335.42 rows=995000 width=36) (actual time=14316.636..14456.355 rows=567213 loops=1) Output: t.*, t.ctid Sort Key: t.ctid Sort Method: external merge Disk: 28952kB Buffers: shared hit=4433, temp read=13298 written=13336 -> Subquery Scan on t (cost=409241.34..701741.34 rows=995000 width=36) (actual time=12177.370..13945.667 rows=567213 loops=1) Output: t.*, t.ctid Filter: (t.rn <> 1) Rows Removed by Filter: 432787 Buffers: shared hit=4433, temp read=9679 written=9704 -> WindowAgg (cost=409241.34..689241.34 rows=1000000 width=46) (actual time=12177.303..13765.873 rows=1000000 loops=1) Output: row_number() OVER (?), test1_1.ctid, (sort_vals(VARIADIC ARRAY[(test1_1.c1)::text, (test1_1.c2)::text])) Buffers: shared hit=4433, temp read=9679 written=9704 -> Sort (cost=409241.34..411741.34 rows=1000000 width=38) (actual time=12177.293..13163.065 rows=1000000 loops=1) Output: test1_1.ctid, (sort_vals(VARIADIC ARRAY[(test1_1.c1)::text, (test1_1.c2)::text])) Sort Key: (sort_vals(VARIADIC ARRAY[(test1_1.c1)::text, (test1_1.c2)::text])), test1_1.ctid Sort Method: external merge Disk: 51904kB Buffers: shared hit=4430, temp read=9679 written=9704 -> Seq Scan on public.test1 test1_1 (cost=0.00..274425.00 rows=1000000 width=38) (actual time=0.202..8735.620 rows=1000000 loops=1) Output: test1_1.ctid, sort_vals(VARIADIC ARRAY[(test1_1.c1)::text, (test1_1.c2)::text]) Buffers: shared hit=4425 Planning time: 0.292 ms Execution time: 16500.934 ms (46 rows)
方法2-2,使用SUBQUERY排序重组数组,(效率高,烧脑)
explain (analyze,verbose,timing,costs,buffers) delete from test1 where ctid in ( select rid from ( select row_number() over(partition by val order by rid) as rn, rid from ( select rid, array_agg(arr order by arr) val from (select ctid rid, unnest(array[c1,c2]) arr from test1) t group by rid ) t ) t where t.rn<>1 ); QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Delete on public.test1 (cost=18979422.39..18984425.62 rows=199 width=36) (actual time=10186.459..10186.459 rows=0 loops=1) Buffers: shared hit=575991, temp read=19174 written=19212 -> Merge Semi Join (cost=18979422.39..18984425.62 rows=199 width=36) (actual time=9421.861..9923.844 rows=567141 loops=1) Output: test1.ctid, t.* Merge Cond: (test1.ctid = t.rid) Buffers: shared hit=8850, temp read=19174 written=19212 -> Sort (cost=122879.44..125379.56 rows=1000050 width=6) (actual time=796.023..894.723 rows=1000000 loops=1) Output: test1.ctid Sort Key: test1.ctid Sort Method: external sort Disk: 15656kB Buffers: shared hit=4425, temp read=1957 written=1957 -> Seq Scan on public.test1 (cost=0.00..14425.50 rows=1000050 width=6) (actual time=0.016..122.654 rows=1000000 loops=1) Output: test1.ctid Buffers: shared hit=4425 -> Sort (cost=18856542.95..18856543.45 rows=199 width=36) (actual time=8625.739..8775.583 rows=567141 loops=1) Output: t.*, t.rid Sort Key: t.rid Sort Method: external merge Disk: 28952kB Buffers: shared hit=4425, temp read=17217 written=17255 -> Subquery Scan on t (cost=18856528.85..18856535.35 rows=199 width=36) (actual time=6749.159..8251.185 rows=567141 loops=1) Output: t.*, t.rid Filter: (t.rn <> 1) Rows Removed by Filter: 432859 Buffers: shared hit=4425, temp read=13598 written=13623 -> WindowAgg (cost=18856528.85..18856532.85 rows=200 width=46) (actual time=6749.138..8073.103 rows=1000000 loops=1) Output: row_number() OVER (?), test1_1.ctid, (array_agg((unnest(ARRAY[test1_1.c1, test1_1.c2])) ORDER BY (unnest(ARRAY[test1_1.c1, test1_1.c2])))) Buffers: shared hit=4425, temp read=13598 written=13623 -> Sort (cost=18856528.85..18856529.35 rows=200 width=38) (actual time=6749.128..7507.854 rows=1000000 loops=1) Output: test1_1.ctid, (array_agg((unnest(ARRAY[test1_1.c1, test1_1.c2])) ORDER BY (unnest(ARRAY[test1_1.c1, test1_1.c2])))) Sort Key: (array_agg((unnest(ARRAY[test1_1.c1, test1_1.c2])) ORDER BY (unnest(ARRAY[test1_1.c1, test1_1.c2])))), test1_1.ctid Sort Method: external merge Disk: 44040kB Buffers: shared hit=4425, temp read=13598 written=13623 -> GroupAggregate (cost=18106479.21..18856519.21 rows=200 width=38) (actual time=2315.955..4053.484 rows=1000000 loops=1) Output: test1_1.ctid, array_agg((unnest(ARRAY[test1_1.c1, test1_1.c2])) ORDER BY (unnest(ARRAY[test1_1.c1, test1_1.c2]))) Group Key: test1_1.ctid Buffers: shared hit=4425, temp read=5382 written=5382 -> Sort (cost=18106479.21..18356491.71 rows=100005000 width=10) (actual time=2315.934..2530.362 rows=2000000 loops=1) Output: test1_1.ctid, (unnest(ARRAY[test1_1.c1, test1_1.c2])) Sort Key: test1_1.ctid Sort Method: external sort Disk: 43056kB Buffers: shared hit=4425, temp read=5382 written=5382 -> ProjectSet (cost=0.00..521950.88 rows=100005000 width=10) (actual time=0.019..836.774 rows=2000000 loops=1) Output: test1_1.ctid, unnest(ARRAY[test1_1.c1, test1_1.c2]) Buffers: shared hit=4425 -> Seq Scan on public.test1 test1_1 (cost=0.00..14425.50 rows=1000050 width=14) (actual time=0.010..137.319 rows=1000000 loops=1) Output: test1_1.c1, test1_1.c2, test1_1.ctid Buffers: shared hit=4425 Planning time: 0.241 ms Execution time: 10228.121 ms (49 rows)
方法3,
postgres=# do language plpgsql $$ declare v_rec record; v_arr text[]; cur1 cursor for select sort_vals(c1::text,c2::text) as arr from test1 order by sort_vals(c1::text,c2::text),ctid for update; begin for v_rec in cur1 loop if v_rec.arr = v_arr then delete from test1 where current of cur1; end if; v_arr := v_rec.arr; end loop; end; $$; DO Time: 18542.457 ms (00:18.542)
小结
有索引加速和没有索引加速时,三种方法在性能相差比较大。
但是最稳定的还是窗口函数的方法,所以建议使用窗口函数的方法,最靠谱。
数组内元素顺序不一致时,并不相等,可以自定义重排函数。
学问:纸上得来终觉浅,绝知此事要躬行
为事:工欲善其事,必先利其器。
态度:道阻且长,行则将至;行而不辍,未来可期
.....................................................................
------- 桃之夭夭,灼灼其华。之子于归,宜其室家。 ---------------
------- 桃之夭夭,有蕡其实。之子于归,宜其家室。 ---------------
------- 桃之夭夭,其叶蓁蓁。之子于归,宜其家人。 ---------------
=====================================================================
* 博客文章部分截图及内容来自于学习的书本及相应培训课程以及网络其他博客,仅做学习讨论之用,不做商业用途。
* 如有侵权,马上联系我,我立马删除对应链接。 * @author Alan -liu * @Email no008@foxmail.com
转载请标注出处! ✧*꧁一品堂.技术学习笔记꧂*✧. ---> https://www.cnblogs.com/ios9/