机器学习-决策树之ID3算法

概述

决策树(Decision Tree)是一种非参数的有监督学习方法,它是一种树形结构,所以叫决策树。它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。

决策树的核心有三种算法:
ID3:ID3 是最早提出的决策树算法,他就是利用信息增益来选择特征的。
C4.5:他是 ID3 的改进版,他不是直接使用信息增益,而是引入“信息增益比”指标作为特征的选择依据。
CART:这种算法即可以用于分类,也可以用于回归问题。CART 算法使用了基尼系数取代了信息熵模型。
ID3算法是本教程的重点要讲的内容,其余两种算法将会后续推出。

数据集

下面举个例子,会使用ID3算法帮助我们判断今天的天气适不适合出去打球。
进行判断之前,需要历史天气数据和打球活动数据,以下为历史数据集S。

天数 天气 气温 湿度 风力 是否打球
D1 晴朗 湿
D2 晴朗 湿
D3 大雨 湿
D4 小雨 中等 湿
D5 小雨 凉爽 正常
D6 小雨 凉爽 正常
D7 大雨 凉爽 正常
D8 晴朗 中等 湿
D9 晴朗 凉爽 正常
D10 小雨 中等 正常
D11 晴朗 中等 正常
D12 大雨 中等 湿
D13 大雨 正常
D14 小雨 中等 湿

ID3算法

ID3算法会选择当前信息增益最大的特征作为树中新的节点。计算过程如下:

步骤1

假设S为完整的数据集,数据标签(数据类别)共有n个类别,分别为C1,...,CnSi对应Ci类别下数据子集,因此,数据集S的信息熵计算如下:

Entropy(S)=i=1npilog2pi

其中,pi是数据样本为Ci的概率,因此:

pi=|Si||S|

|Si|是类别Ci在数据集S中的数据数量,|S|是数据集S中的数据数量。

步骤2

假设特征Ak种不同的取值,根据特征A,一定条件下的数据集S可以分为k个子集{S1,...,Sk},因此,数据集S的信息熵可以按照如下方式计算:

EntropyA(S)=i=1k|Si||S|Entropy(Si)

步骤3

假设数据集S根据特征A不同的取值分为众多子集,则信息增益的计算为:

Gain(S,A)=Entropy(S)EntropyA(S)

计算数据集中每一个特征的信息增益,如Gain(S,B), Gain(S,C)等,选取信息增益最大的特征作为树中新的节点。

计算信息增益

天气的各个属性如上图所示,它们所有可能的值如下所示:

  • 天气:晴朗、小雨、大雨
  • 气温:热、中等、凉爽
  • 湿度:正常、湿
  • 风力:弱、强

同时,S中有14天的历史天气和活动数据,其中,打球的有9天,不打球的5天,因此数据集S的熵可以计算为:

Entropy(S)=[914×log2914][514×log2514]=0.94

现在我们开始计算每一列的信息增益。

对于天气列,有晴朗小雨大雨三种情况,根据三种情况划分对应的数据子集。
当天气为晴朗时,涉及到的数据如下:

天数 天气 气温 湿度 风力 是否打球
D1 晴朗 湿
D2 晴朗 湿
D8 晴朗 中等 湿
D9 晴朗 凉爽 正常
D11 晴朗 中等 正常

此时有5天的数据,出去打球的有2天,不打球的有3天,因此熵值为:

Entropy(S)=[25×log225][35×log235]=0.971

当天气为小雨时,涉及到的数据如下:

天数 天气 气温 湿度 风力 是否打球
D4 小雨 中等 湿
D5 小雨 凉爽 正常
D6 小雨 凉爽 正常
D10 小雨 中等 正常
D14 小雨 中等 湿

此时有5天的数据,出去打球的有3天,不打球的有2天,因此熵值为:

Entropy(S)=[35×log235][25×log225]=0.971

当天气为大雨时间,涉及到的数据如下:

天数 天气 气温 湿度 风力 是否打球
D3 大雨 湿
D7 大雨 凉爽 正常
D12 大雨 中等 湿
D13 大雨 正常

此时有4天的数据,出去打球的有4天,不打球的有0天,因此熵值为:

Entropy(S)=[44×log244][04×log204]=0

熵值为0,所有数据(标签)都处在同一类,决策树在该分支上停止生长。

由此可以计算天气这一列的信息熵:

Entropy(S)=514×Entropy(S)+514×Entropy(S)+414×Entropy(S)=514×0.971+514×0.971+0=0.69

其信息增益为:

Gain(S,)=Entropy(S)Entropy(S)=0.940.69=0.25

由此可得:

Gain(S,)=Entropy(S)Entropy(S)=0.03Gain(S,湿)=Entropy(S)Entropy(S湿)=0.15Gain(S,)=Entropy(S)Entropy(S)=0.05

信息增益最高的是天气列,由于当前没有根节点,因此选择该列为根节点。

2d

由上图可以看出,需要进一步划分的为晴天小雨时的情况,因此要分别计算当天气=晴天以及天气=小雨时其他列的信息增益。
天气=晴朗时的数据子集如下:

天数 天气 气温 湿度 风力 是否打球
D1 晴朗 湿
D2 晴朗 湿
D8 晴朗 中等 湿
D9 晴朗 凉爽 正常
D11 晴朗 中等 正常

把它当做一个完整的数据集S,根据上一步的计算其信息熵为0.971
分别计算气温湿度风力的信息增益,首先计算气温,气温有三种可能出现的情况,即凉爽中等
气温=凉爽时:

天数 天气 气温 湿度 风力 是否打球
D9 晴朗 凉爽 正常

此时有1天的数据,出去打球的有1天,不打球的有0天,因此熵值为:

Entropy(S|=)=[11×log211][01×log201]=0

气温=中等时:

天数 天气 气温 湿度 风力 是否打球
D8 晴朗 中等 湿
D11 晴朗 中等 正常

此时有2天的数据,出去打球的有1天,不打球的有1天,因此熵值为:

Entropy(S|=)=[12×log212][12×log212]=1.0

气温=热时:

天数 天气 气温 湿度 风力 是否打球
D1 晴朗 湿
D2 晴朗 湿

此时有2天的数据,出去打球的有0天,不打球的有2天,因此熵值为:

Entropy(S|=)=[02×log202][22×log222]=0

因此天气=晴朗时,气温列的信息增益为:

Gain(S,)=Entropy(S)Entropy(S|=)=Entropy(S)15Entropy(S|=)25Entropy(S|=)    25Entropy(S|=)=0.97115×025×125×0=0.571

同理:

Gain(S,湿)=Entropy(S)Entropy(S湿|=)=0.970Gain(S,)=Entropy(S)Entropy(S|=)=0.019

所以,当天气=晴朗时,湿度的信息增益最大,本次决策树生长选择湿度为新的节点。

d4

湿度=正常时:

天数 天气 气温 湿度 风力 是否打球
D9 晴朗 凉爽 正常
D11 晴朗 中等 正常

此时有2条数据,其中打球的有2条,不打球的有0条,因此信息熵为0
湿度=湿时:

天数 天气 气温 湿度 风力 是否打球
D8 晴朗 中等 湿
D1 晴朗 湿
D2 晴朗 湿

此时有3条数据,其中打球的有0条,不打球的有3条,因此信息熵为0
显然可得,当湿度不同时,明显分成两类,因此新的决策树如下:

3d
由上可以看出,当`天气=小雨`时不能正确分类,因此当天气为小雨时的数据子集为:
天数 天气 气温 湿度 风力 是否打球
D4 小雨 中等 湿
D5 小雨 凉爽 正常
D6 小雨 凉爽 正常
D10 小雨 中等 正常
D14 小雨 中等 湿

此时有5天的数据,出去打球的有3天,不打球的有2天,熵值为0.971。
先看气温,此时有两种情况:中等凉爽,分别划分两种情况各自对应的数据集。
气温=中等时,有3次记录,2次打球,1次不打球,因此中等气温时的熵值为:

Entropy(S|=)=[23×log223][13×log213]=0.918

气温=凉爽时,有2次记录,1次打球,1次不打球,因此凉爽气温时的熵值为:

Entropy(S|=)=[12×log212][12×log212]=1.0

因此气温的信息增益为:

Gain(S,)=Entropy(S)Entropy(S|=)=Entropy(S)35Entropy(S|=)25Entropy(S|=)=0.97135×0.91825×1.0=0.02

同理:

Gain(S,湿)=Entropy(S)Entropy(S湿|=)=Entropy(S)25Entropy(S湿|=)35Entropy(S|=)=0.02Gain(S,)=Entropy(S)Entropy(S|=)=Entropy(S)25Entropy(S|=)35Entropy(S|=)=0.971

因此,当天气=小雨时,信息增益最大的为风力,选择该列生长:

d6

风力=强 的时候:

天数 天气 气温 湿度 风力 是否打球
D6 小雨 凉爽 正常
D14 小雨 中等 湿

标签结果一致,信息熵为0。
风力=弱的时候:

天数 天气 气温 湿度 风力 是否打球
D4 小雨 中等 湿
D5 小雨 凉爽 正常
D10 小雨 中等 正常

标签结果一致,信息熵为0。

d5

引用

[1] Quinlan J R . Induction of Decision Trees[J]. Machine Learning, 1986, 1(1):81-106.
[2] University of FLORIDA.The ID3 Algorithm[EB/OL].https://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm,1997.
[3] Xiaohu W , Lele W , Nianfeng L . An Application of Decision Tree Based on ID3[J]. Physics Procedia, 2012, 25:1017-1021.
[4] Sefik Ilkin Serengil.A Step by Step ID3 Decision Tree Example[EB/OL].https://sefiks.com/2017/11/20/a-step-by-step-id3-decision-tree-example/,2017.
[5] Yaser Sakkaf.Decision Trees: ID3 Algorithm Explained[EB/OL].https://towardsdatascience.com/decision-trees-for-classification-id3-algorithm-explained-89df76e72df1,2020.

posted @   orson奥森  阅读(2420)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
点击右上角即可分享
微信分享提示