opencv kmeans 图像分割
利用kmeans算法,将彩色图像的像素点作为样本,rgb值作为样本的属性,
对图像所有的像素点进行分类,从而实现对图像中目标的分割。
c++代码(openCV 2.4.11)
Scalar colorTab[] = {
Scalar(0, 0, 0),
Scalar(255, 255, 255),
};
void color_cluster(const Mat& origin_img_rgb) {
// 1、将图像按像素点转化为样本矩阵samples
Mat samples = Mat(origin_img_rgb.size().width*origin_img_rgb.size().height, 1, CV_32FC3);
int k = 0;
for (int i = 0; i < origin_img_rgb.rows; i++) {
for (int j = 0; j < origin_img_rgb.cols; j++) {
samples.at<cv::Vec3f>(k, 0)[0] = origin_img_rgb.at<cv::Vec3b>(i, j)[0];
samples.at<cv::Vec3f>(k, 0)[1] = origin_img_rgb.at<cv::Vec3b>(i, j)[1];
samples.at<cv::Vec3f>(k, 0)[2] = origin_img_rgb.at<cv::Vec3b>(i, j)[2];
++k;
}
}
// 2、聚类
Mat labels;
Mat centers;
int nCuster = 2; //聚类类别数
// samples 输入样本浮点矩阵
// nCuster 给定聚类类别数量
// labels 每个样本对应的类别标识
// TermCriteria 指定聚类的最大迭代次数或精度
kmeans(samples, nCuster, labels, TermCriteria(CV_TERMCRIT_ITER, 10, 1.0), 3, KMEANS_RANDOM_CENTERS, centers);
// 3、将聚类结果转换为图像显示出来
k = 0;
Mat img(origin_img_rgb.size(), CV_8UC3);
for (int i = 0; i < origin_img_rgb.rows; i++) {
for (int j = 0; j < origin_img_rgb.cols; j++) {
int clusterIdx = labels.at<int>(k++, 0);
circle(img, {j,i}, 2, colorTab[clusterIdx], CV_FILLED, CV_AA);
}
}
imshow("originimg", origin_img_rgb);
imshow("clusters", img);
char key = (char)waitKey();
if (key == 27 || key == 'q' || key == 'Q') {return ;}
}
效果: