flink1.7 checkpoint源码分析
初始化state类
//org.apache.flink.streaming.runtime.tasks.StreamTask#initializeState
initializeState();
private void initializeState() throws Exception {
StreamOperator[] allOperators = operatorChain.getAllOperators();
for (StreamOperator operator : allOperators) {
if (null != operator) {
operator.initializeState();
}
}
}
operator.initializeState() 调用的方法路径 org.apache.flink.streaming.api.operators.AbstractStreamOperator#initializeState() ,所有的操作流类都继承该类,同时也没有重写这个方法。
public final void initializeState() throws Exception {
////这里会调用状态后端,里面很重要
1. final StreamOperatorStateContext context =
streamTaskStateManager.streamOperatorStateContext(
getOperatorID(),
getClass().getSimpleName(),
this,
keySerializer,
streamTaskCloseableRegistry,
metrics);
...
|
streamTaskStateManager.streamOperatorStateContext(......)调用方法的路径org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl#streamOperatorStateContext
......
// -------------- Keyed State Backend 这里是重点 关于checkpoint--------------
keyedStatedBackend = keyedStatedBackend(
keySerializer,
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry,
metricGroup);
// -------------- Operator State Backend 这里是重点 关于checkpoint --------------
operatorStateBackend = operatorStateBackend(
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry);
......
keyedStatedBackend() 这个方法最里面是调用了 org.apache.flink.streaming.api.operators.BackendRestorerProcedure#attemptCreateAndRestore
private T attemptCreateAndRestore(Collection restoreState) throws Exception {
......
// create a new, empty backend.
final T backendInstance = instanceSupplier.get();
// attempt to restore from snapshot (or null if no state was checkpointed).
backendInstance.restore(restoreState);
......
}
backendInstance.restore(restoreState)调用的方法路径org.apache.flink.runtime.state.DefaultOperatorStateBackend#restore
// registeredOperatorStates这个对象是核心
...
PartitionableListState<?> listState = registeredOperatorStates.get(restoredSnapshot.getName());
if (null == listState) {
listState = new PartitionableListState<>(restoredMetaInfo);
//重点,这里就是存储了快照状态类
//********************************************************************
registeredOperatorStates.put(listState.getStateMetaInfo().getName(), listState);
//********************************************************************
} else {
// TODO with eager state registration in place, check here for serializer migration strategies
}
...
triggerCheckpoint 将定时触发执行checkpoint,而上面是是初始化的执行逻辑
定时快照state类
org.apache.flink.runtime.checkpoint.CheckpointCoordinator#triggerCheckpoint(long, boolean)
......
// send the messages to the tasks that trigger their checkpoint 我猜测这里就是远程发送触发checkpoint的步骤 这里进行的数据文件的生成奶奶的
for (Execution execution: executions) {
execution.triggerCheckpoint(checkpointID, timestamp, checkpointOptions);
}
......
execution.triggerCheckpoint调用路径 org.apache.flink.runtime.executiongraph.Execution#triggerCheckpoint
/**
* Trigger a new checkpoint on the task of this execution.
* @param checkpointId of th checkpoint to trigger
* @param timestamp of the checkpoint to trigger
* @param checkpointOptions of the checkpoint to trigger
/
public void triggerCheckpoint(long checkpointId, long timestamp, CheckpointOptions checkpointOptions) {
......
final LogicalSlot slot = assignedResource;
if (slot != null) {
final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
taskManagerGateway.triggerCheckpoint(attemptId, getVertex().getJobId(), checkpointId, timestamp, checkpointOptions);
}
.....
}
taskManagerGateway.triggerCheckpoint(......)里面最终调用路径 org.apache.flink.runtime.taskexecutor.TaskExecutor#triggerCheckpoint
@Override
public CompletableFuture
ExecutionAttemptID executionAttemptID,long checkpointId,long checkpointTimestamp,CheckpointOptions checkpointOptions) {
......
final Task task = taskSlotTable.getTask(executionAttemptID);
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, checkpointTimestamp, checkpointOptions);
return CompletableFuture.completedFuture(Acknowledge.get());
}
......
}
task.triggerCheckpointBarrier(......)调用路径 org.apache.flink.runtime.taskmanager.Task#triggerCheckpointBarrier
/
- Calls the invokable to trigger a checkpoint.
- 这里开始出发执行checkpoint,应该算是入口了,会调用org.apache.flink.streaming.runtime.tasks.StreamTask#triggerCheckpoint
- AsyncCheckpointRunnable 任务在里面被执行
- @param checkpointID The ID identifying the checkpoint.
- @param checkpointTimestamp The timestamp associated with the checkpoint.
- @param checkpointOptions Options for performing this checkpoint.
*/
public void triggerCheckpointBarrier(
final long checkpointID,
long checkpointTimestamp,
final CheckpointOptions checkpointOptions) {
final AbstractInvokable invokable = this.invokable;
final CheckpointMetaData checkpointMetaData = new CheckpointMetaData(checkpointID, checkpointTimestamp);
if (executionState == ExecutionState.RUNNING && invokable != null) {
// build a local closure
final String taskName = taskNameWithSubtask;
final SafetyNetCloseableRegistry safetyNetCloseableRegistry =
FileSystemSafetyNet.getSafetyNetCloseableRegistryForThread();
Runnable runnable = new Runnable() {
@Override
public void run() {
// set safety net from the task's context for checkpointing thread
LOG.debug("Creating FileSystem stream leak safety net for {}", Thread.currentThread().getName());
FileSystemSafetyNet.setSafetyNetCloseableRegistryForThread(safetyNetCloseableRegistry);
try {
boolean success = invokable.triggerCheckpoint(checkpointMetaData, checkpointOptions);
......
}
......
}
};
//创建线程数为1的线程池,提交runnable任务运行
executeAsyncCallRunnable(runnable, String.format("Checkpoint Trigger for %s (%s).", taskNameWithSubtask, executionId));
}
}
invokable.triggerCheckpoint(.....)里面最终调用的方法链如下:
org.apache.flink.streaming.runtime.tasks.StreamTask#triggerCheckpoint
org.apache.flink.streaming.runtime.tasks.StreamTask#performCheckpoint
// we can do a checkpoint
// All of the following steps happen as an atomic step from the perspective of barriers and
// records/watermarks/timers/callbacks.
// We generally try to emit the checkpoint barrier as soon as possible to not affect downstream
// checkpoint alignments
// Step (1): Prepare the checkpoint, allow operators to do some pre-barrier work.
// The pre-barrier work should be nothing or minimal in the common case.
operatorChain.prepareSnapshotPreBarrier(checkpointMetaData.getCheckpointId());
// Step (2): Send the checkpoint barrier downstream 生成状态数据 存储数据的对象为checkpointOptions 尼玛 今天debug没有生成数据呦
operatorChain.broadcastCheckpointBarrier(
checkpointMetaData.getCheckpointId(),
checkpointMetaData.getTimestamp(),
checkpointOptions);
// Step (3): Take the state snapshot. This should be largely asynchronous, to not
// impact progress of the streaming topology
checkpointState(checkpointMetaData, checkpointOptions, checkpointMetrics);
checkpointState(......) 里面最终调用org.apache.flink.streaming.runtime.tasks.StreamTask.CheckpointingOperation#executeCheckpointing()
重点警戒线.....................................................
......
//调用用户的快照方法
for (StreamOperator<?> op : allOperators) {//不同的算子对应的子类不一样,
checkpointStreamOperator(op);
}
//后面生成数据,哪里生成数据了,要找到
//这个run任务好像只生成元数据
// we are transferring ownership over snapshotInProgressList for cleanup to the thread, active on submit
AsyncCheckpointRunnable asyncCheckpointRunnable = new AsyncCheckpointRunnable(
owner,
operatorSnapshotsInProgress,
checkpointMetaData,
checkpointMetrics,
startAsyncPartNano);
owner.cancelables.registerCloseable(asyncCheckpointRunnable);
owner.asyncOperationsThreadPool.submit(asyncCheckpointRunnable;
......
- checkpointStreamOperator(op);
private void checkpointStreamOperator(StreamOperator op) throws Exception {
if (null != op) {
//这个构造方法是核心
OperatorSnapshotFutures snapshotInProgress = op.snapshotState(
checkpointMetaData.getCheckpointId(),
checkpointMetaData.getTimestamp(),
checkpointOptions,
storageLocation);
operatorSnapshotsInProgress.put(op.getOperatorID(), snapshotInProgress);
}
}
op.snapshotState()是核心,调用org.apache.flink.streaming.api.operators.AbstractStreamOperator#snapshotState(long, long, org.apache.flink.runtime.checkpoint.CheckpointOptions, org.apache.flink.runtime.state.CheckpointStreamFactory)
注意因为op是子类,有些累实现AbstractStreamOperator有些子类实现AbstractUdfStreamOperator,所以在下面调用snapshotState(snapshotContext)方法时,会根据子类的实现不同,调用org.apache.flink.streaming.api.operators.AbstractStreamOperator#snapshotState(org.apache.flink.runtime.state.StateSnapshotContext)
或org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator#snapshotState
AbstractStreamOperator 实现类有94个
AbstractUdfStreamOperator实现类有42个
AbstractUdfStreamOperator继承AbstractStreamOperator
@Override
public final OperatorSnapshotFutures snapshotState(long checkpointId, long timestamp, CheckpointOptions checkpointOptions,
CheckpointStreamFactory factory) throws Exception {
try (StateSnapshotContextSynchronousImpl snapshotContext = new StateSnapshotContextSynchronousImpl(
checkpointId,
timestamp,
factory,
keyGroupRange,
getContainingTask().getCancelables())) {
//继承AbstractUdfStreamOperator的操作类会调用用户的快照方法,继承AbstractStreamOperator的操作类会调用这个方法,但是这个方法没有做什么东西。
snapshotState(snapshotContext);
//上面调用好用户的快照方法了,就是确定了状态类里面目前的数据了。
//下面就是如何访问到状态类,讲状态内的数据写入磁盘了。
snapshotInProgress.setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
snapshotInProgress.setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture());
//这里是生产状态数据文件
if (null != operatorStateBackend) {
System.out.println(Thread.currentThread().getName()+"::这里将状态数据写入文件中");
snapshotInProgress.setOperatorStateManagedFuture(
operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
}
//这里是生产状态数据文件
if (null != keyedStateBackend) {
snapshotInProgress.setKeyedStateManagedFuture(
keyedStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
}
}
return snapshotInProgress;
}
operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions))调用路径org.apache.flink.runtime.state.DefaultOperatorStateBackend#snapshot
谜底就在下面
public RunnableFuture
new HashMap<>(registeredOperatorStates.size());
final Map<String, BackendWritableBroadcastState> registeredBroadcastStatesDeepCopies =
new HashMap<>(registeredBroadcastStates.size());
ClassLoader snapshotClassLoader = Thread.currentThread().getContextClassLoader();
try {
// eagerly create deep copies of the list and the broadcast states (if any)
// in the synchronous phase, so that we can use them in the async writing.
//entry.getValue() 里面就是状态类 将状态类存储在新建的map对象中
if (!registeredOperatorStates.isEmpty()) {
for (Map.Entry<String, PartitionableListState> entry : registeredOperatorStates.entrySet()) {
PartitionableListState listState = entry.getValue();
if (null != listState) {
listState = listState.deepCopy();
}
registeredOperatorStatesDeepCopies.put(entry.getKey(), listState);
}
}
//广播状态
if (!registeredBroadcastStates.isEmpty()) {
for (Map.Entry<String, BackendWritableBroadcastState> entry : registeredBroadcastStates.entrySet()) {
BackendWritableBroadcastState broadcastState = entry.getValue();
if (null != broadcastState) {
broadcastState = broadcastState.deepCopy();
}
registeredBroadcastStatesDeepCopies.put(entry.getKey(), broadcastState);
}
}
}
//这个方法里面生成了状态数据文件
AsyncSnapshotCallable<SnapshotResult<OperatorStateHandle>> snapshotCallable =
new AsyncSnapshotCallable<SnapshotResult<OperatorStateHandle>>() {
@Override
protected SnapshotResult
......
// get the registered operator state infos ...
List
new ArrayList<>(registeredOperatorStatesDeepCopies.size());
for (Map.Entry<String, PartitionableListState> entry :
registeredOperatorStatesDeepCopies.entrySet()) {
operatorMetaInfoSnapshots.add(entry.getValue().getStateMetaInfo().snapshot());
}
// ... get the registered broadcast operator state infos ...
List
registeredBroadcastStatesDeepCopies.entrySet()) {
broadcastMetaInfoSnapshots.add(entry.getValue().getStateMetaInfo().snapshot());
}
// ... write them all in the checkpoint stream ...
DataOutputView dov = new DataOutputViewStreamWrapper(localOut);
OperatorBackendSerializationProxy backendSerializationProxy =
new OperatorBackendSerializationProxy(operatorMetaInfoSnapshots, broadcastMetaInfoSnapshots);
backendSerializationProxy.write(dov);
// ... and then go for the states ...
......
}
};
final FutureTask<SnapshotResult
snapshotCallable.toAsyncSnapshotFutureTask(closeStreamOnCancelRegistry);
if (!asynchronousSnapshots) {
task.run();
}
return task;
}
}
从上面我们可以看到,状态类都存放在registeredOperatorStatesDeepCopies这个map中。
用户能够更新状态类的数据都是因为这样访问到了状态类
public void initializeState(FunctionInitializationContext context) throws Exception {
......
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
......
}
调用的就是org.apache.flink.runtime.state.DefaultOperatorStateBackend#getListState(org.apache.flink.api.common.state.ListStateDescriptor)
/**
* @Description: 返回状态类的时候,将状态类放入map对象供后面写入文件中
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/18
/
private ListState getListState(
ListStateDescriptor stateDescriptor,
OperatorStateHandle.Mode mode) throws StateMigrationException {
@SuppressWarnings("unchecked")
PartitionableListState previous = (PartitionableListState) accessedStatesByName.get(name);
if (previous != null) {
checkStateNameAndMode(
previous.getStateMetaInfo().getName(),
name,
previous.getStateMetaInfo().getAssignmentMode(),
mode);
return previous;
}
......
PartitionableListState partitionableListState = (PartitionableListState) registeredOperatorStates.get(name);
if (null == partitionableListState) {
// no restored state for the state name; simply create new state holder
partitionableListState = new PartitionableListState<>(
new RegisteredOperatorStateBackendMetaInfo<>(
name,
partitionStateSerializer,
mode));
//这里也会存储状态类数据registeredOperatorStates这个对象和DefaultOperatorStateBackendSnapshotStrategy类的快照方法访问的对象共享
//************************************************************
registeredOperatorStates.put(name, partitionableListState);
}