flink1.7 checkpoint源码分析

初始化state类
//org.apache.flink.streaming.runtime.tasks.StreamTask#initializeState
initializeState();
private void initializeState() throws Exception {

StreamOperator[] allOperators = operatorChain.getAllOperators(); ​ for (StreamOperator operator : allOperators) {
if (null != operator) {
operator.initializeState();
}
}
}
operator.initializeState() 调用的方法路径 org.apache.flink.streaming.api.operators.AbstractStreamOperator#initializeState() ,所有的操作流类都继承该类,同时也没有重写这个方法。
public final void initializeState() throws Exception {
////这里会调用状态后端,里面很重要
1. final StreamOperatorStateContext context =
streamTaskStateManager.streamOperatorStateContext(
getOperatorID(),
getClass().getSimpleName(),
this,
keySerializer,
streamTaskCloseableRegistry,
metrics);
...
|
streamTaskStateManager.streamOperatorStateContext(......)调用方法的路径org.apache.flink.streaming.api.operators.StreamTaskStateInitializerImpl#streamOperatorStateContext
......
// -------------- Keyed State Backend 这里是重点 关于checkpoint--------------
keyedStatedBackend = keyedStatedBackend(
keySerializer,
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry,
metricGroup);

// -------------- Operator State Backend 这里是重点 关于checkpoint --------------
operatorStateBackend = operatorStateBackend(
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry);
......
keyedStatedBackend() 这个方法最里面是调用了 org.apache.flink.streaming.api.operators.BackendRestorerProcedure#attemptCreateAndRestore
private T attemptCreateAndRestore(Collection restoreState) throws Exception {
......
// create a new, empty backend.
final T backendInstance = instanceSupplier.get();

// attempt to restore from snapshot (or null if no state was checkpointed).
backendInstance.restore(restoreState);
......
}
backendInstance.restore(restoreState)调用的方法路径org.apache.flink.runtime.state.DefaultOperatorStateBackend#restore
// registeredOperatorStates这个对象是核心
...
PartitionableListState<?> listState = registeredOperatorStates.get(restoredSnapshot.getName());

if (null == listState) {
listState = new PartitionableListState<>(restoredMetaInfo);
//重点,这里就是存储了快照状态类
//********************************************************************
registeredOperatorStates.put(listState.getStateMetaInfo().getName(), listState);
//********************************************************************
} else {
// TODO with eager state registration in place, check here for serializer migration strategies
}
...
triggerCheckpoint 将定时触发执行checkpoint,而上面是是初始化的执行逻辑

定时快照state类
org.apache.flink.runtime.checkpoint.CheckpointCoordinator#triggerCheckpoint(long, boolean) 
......
// send the messages to the tasks that trigger their checkpoint 我猜测这里就是远程发送触发checkpoint的步骤 这里进行的数据文件的生成奶奶的
for (Execution execution: executions) {
execution.triggerCheckpoint(checkpointID, timestamp, checkpointOptions);
}
......
execution.triggerCheckpoint调用路径 org.apache.flink.runtime.executiongraph.Execution#triggerCheckpoint
/**
* Trigger a new checkpoint on the task of this execution.
* @param checkpointId of th checkpoint to trigger
* @param timestamp of the checkpoint to trigger
* @param checkpointOptions of the checkpoint to trigger
/
public void triggerCheckpoint(long checkpointId, long timestamp, CheckpointOptions checkpointOptions) {
      ......
final LogicalSlot slot = assignedResource;
if (slot != null) {
final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
taskManagerGateway.triggerCheckpoint(attemptId, getVertex().getJobId(), checkpointId, timestamp, checkpointOptions);
}
      .....
}
taskManagerGateway.triggerCheckpoint(......)里面最终调用路径 org.apache.flink.runtime.taskexecutor.TaskExecutor#triggerCheckpoint
@Override
public CompletableFuture triggerCheckpoint(
ExecutionAttemptID executionAttemptID,long checkpointId,long checkpointTimestamp,CheckpointOptions checkpointOptions) {
  ......
final Task task = taskSlotTable.getTask(executionAttemptID);
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, checkpointTimestamp, checkpointOptions);

return CompletableFuture.completedFuture(Acknowledge.get());
}
  ......
}
task.triggerCheckpointBarrier(......)调用路径 org.apache.flink.runtime.taskmanager.Task#triggerCheckpointBarrier
/
*

  • Calls the invokable to trigger a checkpoint.
  • 这里开始出发执行checkpoint,应该算是入口了,会调用org.apache.flink.streaming.runtime.tasks.StreamTask#triggerCheckpoint
  • AsyncCheckpointRunnable 任务在里面被执行
  • @param checkpointID The ID identifying the checkpoint.
  • @param checkpointTimestamp The timestamp associated with the checkpoint.
  • @param checkpointOptions Options for performing this checkpoint.
    */
    public void triggerCheckpointBarrier(
    final long checkpointID,
    long checkpointTimestamp,
    final CheckpointOptions checkpointOptions) {

    final AbstractInvokable invokable = this.invokable;
    final CheckpointMetaData checkpointMetaData = new CheckpointMetaData(checkpointID, checkpointTimestamp);

    if (executionState == ExecutionState.RUNNING && invokable != null) {

    // build a local closure
    final String taskName = taskNameWithSubtask;
    final SafetyNetCloseableRegistry safetyNetCloseableRegistry =
    FileSystemSafetyNet.getSafetyNetCloseableRegistryForThread();

    Runnable runnable = new Runnable() {
    @Override
    public void run() {
    // set safety net from the task's context for checkpointing thread
    LOG.debug("Creating FileSystem stream leak safety net for {}", Thread.currentThread().getName());
    FileSystemSafetyNet.setSafetyNetCloseableRegistryForThread(safetyNetCloseableRegistry);

    try {
    boolean success = invokable.triggerCheckpoint(checkpointMetaData, checkpointOptions);
    ......
    }
      ......
    }
    };
    //创建线程数为1的线程池,提交runnable任务运行
    executeAsyncCallRunnable(runnable, String.format("Checkpoint Trigger for %s (%s).", taskNameWithSubtask, executionId));
    }
    }
    invokable.triggerCheckpoint(.....)里面最终调用的方法链如下:
    org.apache.flink.streaming.runtime.tasks.StreamTask#triggerCheckpoint
    org.apache.flink.streaming.runtime.tasks.StreamTask#performCheckpoint
    // we can do a checkpoint

    // All of the following steps happen as an atomic step from the perspective of barriers and
    // records/watermarks/timers/callbacks.
    // We generally try to emit the checkpoint barrier as soon as possible to not affect downstream
    // checkpoint alignments

    // Step (1): Prepare the checkpoint, allow operators to do some pre-barrier work.
    //           The pre-barrier work should be nothing or minimal in the common case.
    operatorChain.prepareSnapshotPreBarrier(checkpointMetaData.getCheckpointId());

    // Step (2): Send the checkpoint barrier downstream 生成状态数据 存储数据的对象为checkpointOptions 尼玛 今天debug没有生成数据呦
    operatorChain.broadcastCheckpointBarrier(
    checkpointMetaData.getCheckpointId(),
    checkpointMetaData.getTimestamp(),
    checkpointOptions);

    // Step (3): Take the state snapshot. This should be largely asynchronous, to not
    //           impact progress of the streaming topology
    checkpointState(checkpointMetaData, checkpointOptions, checkpointMetrics);
    checkpointState(......) 里面最终调用org.apache.flink.streaming.runtime.tasks.StreamTask.CheckpointingOperation#executeCheckpointing()
    重点警戒线.....................................................
    ......
    //调用用户的快照方法
    for (StreamOperator<?> op : allOperators) {//不同的算子对应的子类不一样,
    checkpointStreamOperator(op);
    }
    //后面生成数据,哪里生成数据了,要找到

    //这个run任务好像只生成元数据
    // we are transferring ownership over snapshotInProgressList for cleanup to the thread, active on submit
    AsyncCheckpointRunnable asyncCheckpointRunnable = new AsyncCheckpointRunnable(
    owner,
    operatorSnapshotsInProgress,
    checkpointMetaData,
    checkpointMetrics,
    startAsyncPartNano);

    owner.cancelables.registerCloseable(asyncCheckpointRunnable);
    owner.asyncOperationsThreadPool.submit(asyncCheckpointRunnable;
    ......
  1. checkpointStreamOperator(op);

private void checkpointStreamOperator(StreamOperator op) throws Exception { if (null != op) {        //这个构造方法是核心 OperatorSnapshotFutures snapshotInProgress = op.snapshotState( checkpointMetaData.getCheckpointId(), checkpointMetaData.getTimestamp(), checkpointOptions, storageLocation); operatorSnapshotsInProgress.put(op.getOperatorID(), snapshotInProgress); } } op.snapshotState()是核心,调用org.apache.flink.streaming.api.operators.AbstractStreamOperator#snapshotState(long, long, org.apache.flink.runtime.checkpoint.CheckpointOptions, org.apache.flink.runtime.state.CheckpointStreamFactory) 注意因为op是子类,有些累实现AbstractStreamOperator有些子类实现AbstractUdfStreamOperator,所以在下面调用snapshotState(snapshotContext)方法时,会根据子类的实现不同,调用org.apache.flink.streaming.api.operators.AbstractStreamOperator#snapshotState(org.apache.flink.runtime.state.StateSnapshotContext) 或org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator#snapshotState AbstractStreamOperator 实现类有94个 AbstractUdfStreamOperator实现类有42个 AbstractUdfStreamOperator继承AbstractStreamOperator @Override public final OperatorSnapshotFutures snapshotState(long checkpointId, long timestamp, CheckpointOptions checkpointOptions, CheckpointStreamFactory factory) throws Exception { ​ try (StateSnapshotContextSynchronousImpl snapshotContext = new StateSnapshotContextSynchronousImpl( checkpointId, timestamp, factory, keyGroupRange, getContainingTask().getCancelables())) { ​ //继承AbstractUdfStreamOperator的操作类会调用用户的快照方法,继承AbstractStreamOperator的操作类会调用这个方法,但是这个方法没有做什么东西。 snapshotState(snapshotContext);        //上面调用好用户的快照方法了,就是确定了状态类里面目前的数据了。        //下面就是如何访问到状态类,讲状态内的数据写入磁盘了。 snapshotInProgress.setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture()); snapshotInProgress.setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture()); //这里是生产状态数据文件 if (null != operatorStateBackend) { System.out.println(Thread.currentThread().getName()+"::这里将状态数据写入文件中"); snapshotInProgress.setOperatorStateManagedFuture( operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions)); }        //这里是生产状态数据文件 if (null != keyedStateBackend) { snapshotInProgress.setKeyedStateManagedFuture( keyedStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions)); } } return snapshotInProgress; } operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions))调用路径org.apache.flink.runtime.state.DefaultOperatorStateBackend#snapshot 谜底就在下面 public RunnableFuture> snapshot( long checkpointId, long timestamp, @Nonnull CheckpointStreamFactory streamFactory, @Nonnull CheckpointOptions checkpointOptions) throws Exception { long syncStartTime = System.currentTimeMillis(); ​        //这个是超级关键的地方,你想知道如何访问到用户函数中的状态类,就在这里。 RunnableFuture> snapshotRunner = snapshotStrategy.snapshot(checkpointId, timestamp, streamFactory, checkpointOptions); ​ snapshotStrategy.logSyncCompleted(streamFactory, syncStartTime); return snapshotRunner; } snapshotStrategy.snapshot(checkpointId, timestamp, streamFactory, checkpointOptions)调用路径,取决于用户指定的后端状态,默认调用路径如下org.apache.flink.runtime.state.DefaultOperatorStateBackend.DefaultOperatorStateBackendSnapshotStrategy#snapshot DefaultOperatorStateBackendSnapshotStrategy 是DefaultOperatorStateBackend的内部类 public RunnableFuture> snapshot(......) throws IOException { //貌似数据就存在 registeredOperatorStates对象里面 其实下面的步骤不用研究,就是将状态数据写入文件,主要看看这个registeredOperatorStates是怎么弄到的 //************重点 registeredOperatorStates   对象 final Map> registeredOperatorStatesDeepCopies =
new HashMap<>(registeredOperatorStates.size());
final Map<String, BackendWritableBroadcastState> registeredBroadcastStatesDeepCopies =
new HashMap<>(registeredBroadcastStates.size());

ClassLoader snapshotClassLoader = Thread.currentThread().getContextClassLoader();
try {
// eagerly create deep copies of the list and the broadcast states (if any)
// in the synchronous phase, so that we can use them in the async writing.
//entry.getValue() 里面就是状态类 将状态类存储在新建的map对象中
if (!registeredOperatorStates.isEmpty()) {
for (Map.Entry<String, PartitionableListState> entry : registeredOperatorStates.entrySet()) { PartitionableListState listState = entry.getValue();
if (null != listState) {
listState = listState.deepCopy();
}
registeredOperatorStatesDeepCopies.put(entry.getKey(), listState);
}
}
//广播状态
if (!registeredBroadcastStates.isEmpty()) {
for (Map.Entry<String, BackendWritableBroadcastState> entry : registeredBroadcastStates.entrySet()) {
BackendWritableBroadcastState broadcastState = entry.getValue();
if (null != broadcastState) {
broadcastState = broadcastState.deepCopy();
}
registeredBroadcastStatesDeepCopies.put(entry.getKey(), broadcastState);
}
}
}

        //这个方法里面生成了状态数据文件
        AsyncSnapshotCallable<SnapshotResult<OperatorStateHandle>> snapshotCallable =
            new AsyncSnapshotCallable<SnapshotResult<OperatorStateHandle>>() {


@Override
protected SnapshotResult callInternal() throws Exception {
......
// get the registered operator state infos ...
List operatorMetaInfoSnapshots =
new ArrayList<>(registeredOperatorStatesDeepCopies.size());

for (Map.Entry<String, PartitionableListState> entry : registeredOperatorStatesDeepCopies.entrySet()) { operatorMetaInfoSnapshots.add(entry.getValue().getStateMetaInfo().snapshot()); } ​ // ... get the registered broadcast operator state infos ... List broadcastMetaInfoSnapshots = new ArrayList<>(registeredBroadcastStatesDeepCopies.size()); ​ for (Map.Entry> entry :
registeredBroadcastStatesDeepCopies.entrySet()) {
broadcastMetaInfoSnapshots.add(entry.getValue().getStateMetaInfo().snapshot());
}

// ... write them all in the checkpoint stream ...
DataOutputView dov = new DataOutputViewStreamWrapper(localOut);

OperatorBackendSerializationProxy backendSerializationProxy =
new OperatorBackendSerializationProxy(operatorMetaInfoSnapshots, broadcastMetaInfoSnapshots);

backendSerializationProxy.write(dov);

// ... and then go for the states ...

......
}
};

final FutureTask<SnapshotResult> task =
snapshotCallable.toAsyncSnapshotFutureTask(closeStreamOnCancelRegistry);

if (!asynchronousSnapshots) {
task.run();
}

return task;
}
}
从上面我们可以看到,状态类都存放在registeredOperatorStatesDeepCopies这个map中。
用户能够更新状态类的数据都是因为这样访问到了状态类
public void initializeState(FunctionInitializationContext context) throws Exception {
......
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
......
}
调用的就是org.apache.flink.runtime.state.DefaultOperatorStateBackend#getListState(org.apache.flink.api.common.state.ListStateDescriptor)
/**
* @Description: 返回状态类的时候,将状态类放入map对象供后面写入文件中
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/18
/
private ListState getListState(
ListStateDescriptor stateDescriptor,
OperatorStateHandle.Mode mode) throws StateMigrationException {
@SuppressWarnings("unchecked")
PartitionableListState previous = (PartitionableListState) accessedStatesByName.get(name);
if (previous != null) {
checkStateNameAndMode(
previous.getStateMetaInfo().getName(),
name,
previous.getStateMetaInfo().getAssignmentMode(),
mode);
return previous;
}
      ......
PartitionableListState partitionableListState = (PartitionableListState) registeredOperatorStates.get(name);

if (null == partitionableListState) {
// no restored state for the state name; simply create new state holder
partitionableListState = new PartitionableListState<>(
new RegisteredOperatorStateBackendMetaInfo<>(
name,
partitionStateSerializer,
mode));
//这里也会存储状态类数据registeredOperatorStates这个对象和DefaultOperatorStateBackendSnapshotStrategy类的快照方法访问的对象共享
//
************************************************************
registeredOperatorStates.put(name, partitionableListState);
}

posted @ 2019-04-26 10:58  暴躁IT老绵羊  阅读(665)  评论(1编辑  收藏  举报