网络优化方法--Dropout
网络优化方法--Dropout
1、Dropout介绍
Dropout 也是一种用于抵抗过拟合的技术,它试图改变网络本身来对网络进行优化。我 们先来了解一下它的工作机制,当我们训练一个普通的神经网络时,网络的结构可能如图所示。
Dropout 通常是在神经网络隐藏层的部分使用,使用的时候会临时关闭掉一部分的神经 元,我们可以通过一个参数来控制神经元被关闭的概率,网络结构如图所示。
更详细的流程如下:
- 在模型训练阶段我们可以先给 Dropout 参数设置一个值,例如 0.4。意思是 大约 60%的神经元是工作的,大约 40%神经元是不工作的
- 给需要进行Dropout的神经网络层的每一个神经元生成一个0-1 的随机数(一 般是对隐藏层进行 Dropout)。如果神经元的随机数小于 0.6,那么该神经元就设置为 工作状态的;如果神经元的随机数大于等于 0.6,那么该神经元就设置为不工作的,
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?