BP神经网络(反向传播算法原理、推导过程、计算步骤)

1、反向传播算法的原理

  反向传播算法的核心思想是将输出误差以某种形式通过隐藏层向输入层逐层反转,如下图所示。

image-20220616165727007

  反向传播算法在整个神经网络训练过程中发挥着重要的作用,它调整神经元之间的参数来学习样本中的规则,事实上权重存储了数据中存在的特征。在训练过程中,前向传播和后向传播相辅相成,如下图所示。

posted @   别团等shy哥发育  阅读(36)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
历史上的今天:
2021-06-16 SpringBoot2.5.1整合thymeleaf以及springsecurity后sec:authorize无效的问题
点击右上角即可分享
微信分享提示