pandas中如何选取某几列

本文介绍在 pandas 中如何读取数据行列的方法。数据由行和列组成,在数据库中,一般行被称作记录 (record),列被称作字段 (field)。回顾一下我们对记录和字段的获取方式:一般情况下,字段根据名称获取,记录根据筛选条件获取。比如获取 student_id 和 studnent_name 两个字段;记录筛选,比如 sales_amount 大于 10000 的所有记录。对于熟悉 SQL 语句的人来说,就是下面的语句:

select student_id, student_name

from exam_scores

where chinese >= 90 and math >= 90

上面的 SQL 语句表示从考试成绩表 (exam_scores) 中,筛选出语文和数学都大于或等于 90 分的所有学生 id 和 name。学习 pandas 数据获取,推荐这种以数据处理的目标为导向的方式,而不是被动的按 pandas 提供的 loc, iloc的语法中,一条条顺序学习。

本篇我们要分析的关于销售数量和金额的一组数据,数据存放在 csv 文件中。示例数据我在 github 上放了一份,方便大家对照练习。

选择列

以下两种方法返回 Series 类型:

import pandas as pd

df = pd.read_csv('sample-salesv3.csv')

df.name

# 或者

df['name']

如果需要返回 DataFrame 格式,使用 list 作为参数。为了方便说明,给出在 jupyter notebook 中显示的界面。

如果需要选取多列,传给 DataFrame 一个包含列名的 list:

选择行

假设我们要筛选 quantity < 0 的所有记录:

按多条件筛选的处理方式。假设想筛选 quantity < 0 并且 unit price > 50 的所有记录:

代码:

criteria = (df['quantity'] < 0) & (df['unit price'] > 50)

df[criteria].head()

在 pandas 中,AND 条件的运算符为 & ,OR 条件的运算符为 |。假设想筛选所有 quantity > 30 或 unit price > 50 的记录:

代码:

criteria = (df['quantity'] > 30) | (df['unit price'] > 50)

df[criteria].head()

基于字符串的记录筛选

如果筛选条件为基于字符串,可以使用用 Series.str.xxx 方法,主要有 startswith, endswith 和 contains等。举一个例子,筛选出所有 name 含有 White 的记录:

代码:

criteria = df['name'].str.contains('White')

df[criteria].head()

这里解释一下 pandas 布尔索引 (boolean indexing) 的概念。布尔索引的意思是首先构建一个与 DataFrame 的 index 长度相同的一个 boolean 向量 (boolean vector),这个向量中只包含 True 或者 False,布尔索引是一个 Series。然后 DataFrame 在筛选的时候,基于 DataFrame 的行索引,当布尔索引相同行索引所在行的 value 为 True 时,DataFrame 的这一行就包含在筛选之中,否则就排除在外。

为了能看得更加清晰,我们把上面的例子用另外一个方法来展示。创建一个新列:is_selected,这一列是一个布尔索引。

df['is_selected'] = df['name'].str.contains('White')

我们看到,is_selected 由 True 和 False 构成。

构建了 is_selected 列之后,通过df[df['name'].str.contains('White')] 筛选与下面的语句作用相同:

df[df['is_selected'] == True]

可以把 df['name'].str.contains('White') 这个布尔索引理解为构建了一个新列,然后基于这一列进行筛选。

基于 DateTime 类型的记录筛选

如果列的类型是 DateTime 类型,比如本示例的 date 列。pandas 读取 csv 文件时,date 列是 str 类型,所以我们先将 date 列转换成 datetime 类型,然后基于 pandas 的 Timestamp 类型构建筛选条件。

# 将 date 列转换成 datetime 类型

df['date'] = pd.to_datetime(df['date'])

# 筛选条件为日期大于 2014/4/1

criteria = df['date'] > pd.Timestamp(2014,4,1)

df[criteria].head()

同时选择行和列

如果基于本篇所说的模式,同时选择行和列,最简单的方法是组合,比如先基于行构建 DataFrame,然后再基于这个 DataFrame 选取需要的列:

where = df['name'].str.contains('White')

cols = ['name', 'quantity', 'unit price', 'ext price']

df[where][cols].head()

posted @   锐洋智能  阅读(2850)  评论(0编辑  收藏  举报
编辑推荐:
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
阅读排行:
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· 分享4款.NET开源、免费、实用的商城系统
· 解决跨域问题的这6种方案,真香!
· 5. Nginx 负载均衡配置案例(附有详细截图说明++)
· Windows 提权-UAC 绕过
历史上的今天:
2014-12-24 3种LVS/Nginx/HAProxy负载均衡器的对比分析
点击右上角即可分享
微信分享提示