二项式反演

公式 1

\[g(n) = \sum_{i = 0}^n \binom n if(i) \]

\[f(n) = \sum_{i = 0}^n (-1)^{n - i} \binom n ig(i) \]

证明

\[f(n) = \sum_{i = 0}^n(-1)^{n - i} \binom n i g(i) \]

\[= \sum_{i = 0}^n (-1)^{n - i} \binom ni \sum_{j = 0}^i \binom i j f(j) \]

\[=\sum_{j = 0}^nf(j)\sum_{i = j}^n\binom n i \binom i j (-1)^{n - i} \]

\[= \sum_{j = 0}^n f(j) \sum_{i = j}^n\binom n j \binom {n - j} {i - j} (-1)^{n - i} \]

\[= \sum_{j = 0}^n\binom n j f(j) \sum_{i = 0}^{n- j} \binom {n - j} i (-1)^{n - j - i} \]

\[= \sum_{j = 0}^n f(j) (\binom n j\sum_{i = 0} ^{n - j} (1 - 1)^{n - j} ) \]

\[=f(n) \]

公式 2

\[g(k) = \sum\limits_{i = k} ^ n \binom i k f(i) \]

\[f(k) = \sum\limits_{i = k} ^ n \binom i k g(i)* (-1) ^ {i - k} \]

证明

\[g(k) = \sum\limits_{i = k} ^ n \binom i k \sum\limits_{j = i} ^ n \binom j i g(j) * (-1) ^ {j - i} \]

\[= \sum_{j = k} ^n g(j) \sum_{i = k} ^j \binom j i \binom i k (-1) ^ {j - i} \]

\[= \sum_{j = k} ^n g(j)\sum_{i = k} ^ j \binom j k \binom {j - k} {i - k} (-1)^ {j - i} \]

\[= \sum_{j = k}^n g(j) \binom j k \sum_{i = 0} ^ {j - k} \binom {j - k} i (-1) ^{j - k - i} \]

\[= \sum_{j = k}^n g(j) \binom j k (1 - 1) ^ {j - k} \]

\[= g(k) \]

例题

题意

\(n\) 个相邻格子, \(m\) 种颜色, 每种颜色有价值 \(v_i\)\(m\) 种颜色喷涂到格子上,要求相邻格子颜色不相同,每种颜色的价值只算一遍,求格子总价值的期望,由于答案过大,你只需要求出答案 \(mod \ 998244353\) 即可

\(n \leq 1e16, m \leq 2000\)

解法

\(g(m)\)\(m\) 种颜色随便喷涂的方案数

显然

\[g(m) = m * (m - 1) ^ {n - 1} \]

\(f(m)\) 为恰好用 \(m\) 种颜色的方案数

\[g(m) = \sum_{i = 0}^m \binom m i f(i) \]

\[f(m) = \sum_{i = 0}^m (-1) ^ {m - i} \binom m i g(i) \]

\[total = \sum_{i = 1}^m v_i \]

\[E = \sum_{i = 0}^m \frac {f(i)} {g(m)} * \binom m i i * \frac { total} m \]

posted @ 2020-06-06 12:00  __int256  阅读(91)  评论(0编辑  收藏  举报