算法导论-----数论-----初等数论的概念

  1. 判断一个数论算法的时间复杂度用位操作和算术运算
  2. 每个正整数a可被其平凡约数1和a 整除,a的非平凡约数也称a的因子
  3. 1是基数,既不是素数也不是合数;整数0和所有的负数既不是素数也不是合数
  4. 对数的划分:1.倍数和非倍数2余数.模n等价类
  5. 除法定理:对任意整数a和任意正整数n,存在唯一q,r,满足0<=r<n,且a=qn+r
  6. d|a且d|b蕴含着d|(ax+by)
  7. 若a|b,则,或者|a|<=|b|,或者|b|=0
  8. a|b且b|a,则a=+-b
  9. a,b不都为0的正整数,gcd(a,b)是a,b线性组合{ax+by;x,y整数}中最小的正元素

    证明:

    1. 证s=ax+by是公约数。令s=ax+by是最小线性组合;a=qs+r。amods=a-qs=a-q(ax+by)=(a-qa)x+(a-qb)y

      0<=amods<=s,所以amods=0,同理bmods=0,所以s是公约数

    2. 证是最大公约数。由上可知gcd(a,b)>=s

      gcd(a,b)|ax+by,gcd(a,b)|ax+by,所以gcd(a,b)<=ax+by

10.d|a,d|b则d|gcd(a,b);gcd(an,bn)=ngcd(a,b)

11. n|ab且gcd(a,n)=1,则,n|b

12. 证明互质:gcd(a,p)=1,gcd(b,p)=1则gcd(ab,p)=1(可推出两互质数的和和积是互质的)

13. p|ab,则p|a或p|b

14. 合数a仅能以一种方式写成素数幂乘积形式

posted on 2012-03-09 11:13  Inpeace7  阅读(391)  评论(0编辑  收藏  举报

导航