200. 岛屿数量

一、题目

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

二、思路

为了求出岛屿的数量,我们可以扫描整个二维网格。如果一个位置为 111,则将其与相邻四个方向上的 111 在并查集中进行合并。

最终岛屿的数量就是并查集中连通分量的数目。

三、代码

class Solution {
    class UnionFind {
        int count;
        int[] parent;
        int[] rank;

        public UnionFind(char[][] grid) {
            count = 0;
            int m = grid.length;
            int n = grid[0].length;
            parent = new int[m * n];
            rank = new int[m * n];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == '1') {
                        parent[i * n + j] = i * n + j;
                        ++count;
                    }
                    rank[i * n + j] = 0;
                }
            }
        }

        public int find(int i) {
            if (parent[i] != i) parent[i] = find(parent[i]);
            return parent[i];
        }

        public void union(int x, int y) {
            int rootx = find(x);
            int rooty = find(y);
            if (rootx != rooty) {
                if (rank[rootx] > rank[rooty]) {
                    parent[rooty] = rootx;
                } else if (rank[rootx] < rank[rooty]) {
                    parent[rootx] = rooty;
                } else {
                    parent[rooty] = rootx;
                    rank[rootx] += 1;
                }
                --count;
            }
        }

        public int getCount() {
            return count;
        }
    }

    public int numIslands(char[][] grid) {
        if (grid == null || grid.length == 0) {
            return 0;
        }

        int nr = grid.length;
        int nc = grid[0].length;
        int num_islands = 0;
        UnionFind uf = new UnionFind(grid);
        for (int r = 0; r < nr; ++r) {
            for (int c = 0; c < nc; ++c) {
                if (grid[r][c] == '1') {
                    grid[r][c] = '0';
                    if (r - 1 >= 0 && grid[r-1][c] == '1') {
                        uf.union(r * nc + c, (r-1) * nc + c);
                    }
                    if (r + 1 < nr && grid[r+1][c] == '1') {
                        uf.union(r * nc + c, (r+1) * nc + c);
                    }
                    if (c - 1 >= 0 && grid[r][c-1] == '1') {
                        uf.union(r * nc + c, r * nc + c - 1);
                    }
                    if (c + 1 < nc && grid[r][c+1] == '1') {
                        uf.union(r * nc + c, r * nc + c + 1);
                    }
                }
            }
        }

        return uf.getCount();
    }
}

四、分析

复杂度分析

  • 时间复杂度:O(MN×α(MN)),其中 M 和 N 分别为行数和列数。注意当使用路径压缩(见 find 函数)和按秩合并(见数组 rank)实现并查集时,单次操作的时间复杂度为 α(MN),其中 α(x)反阿克曼函数当自变量 x 的值在人类可观测的范围内(宇宙中粒子的数量)时,函数 α(x) 的值不会超过 5,因此也可以看成是常数时间复杂度。
  • 空间复杂度:O(MN),这是并查集需要使用的空间。

 

posted @ 2023-04-30 19:54  ImreW  阅读(8)  评论(0编辑  收藏  举报